Rotational Motions Extracted from Delaney Park Downhole Array in Anchorage, Alaska

Vladimir Graizer U.S. Nuclear Regulatory Commission <u>Vladimir.Graizer@nrc.gov</u>

> Erol Kalkan U.S. Geological Survey <u>Ekalkan@usgs.gov</u>

Protecting People and the Environment

Seismological Society of America Annual Meeting Seattle, WA, April 25, 2019

Delaney Park Geotechnical (DPK) Array

- DPK array is located at northwest downtown Anchorage.
- The array was installed in 2003
 in a collaboration between UAA,
 USGS, NSF and UC Santa
 Barbara.
- It is now maintained jointly by the USGS and UC Santa Barbara.

Instrumentation & Geology

 Ground motions are measured at the surface and at six levels below the surface using borehole accelerometers.

Cross-section and S-wave Velocity

 Accelerometers record motions in the glacial outwash sediments near the surface, the clays of the bootlegger cove formation, and at its deepest into the glacial till.

Schematic Plan of the Delaney Park Downhole Array

Earthquake Recordings

DPK Array recorded the **M7** November 30, 2018 Anchorage Alaska Earthquake (epi dist=14.3 km, Depth=40.9 km) and a series of aftershocks including the M5.7, M4.8 and other smaller ones.

Delaney Array Recordings of November 30, 2018 M7.0 Anchorage Earthquake

E-W

N-S

Vertical

	D0			D1		
	Acceleration cm/s/s	Velocity Cm/s	Displacement cm	Acceleration cm/s/s	Velocity cm/s	Displacement cm
HNN	245.6	15.95	5.43	208.76	14.76	5.35
HNE	247.3	24.64	9.88	195.87	25.65	10.52
HNZ	294.1	7.64	2.73	212.27	7.26	4.19

Displacements in Downhole

Downhole Displacement

Displacements in Downhole

Deformation

Deformation (simple shear) in the downhole along the *x*-axis

where $x_n(t)$ and $x_{n-1}(t)$ are amplitudes of horizontal ground motions at the same time t at different elevations in the downhole, and L is the distance between those elevations measurements (base).

Simple shear strain with the rate γ is the combination of pure shear strain with the rate $\gamma/2$ and rotation with the rate of $\alpha = \gamma/2$.

Deformations at Depths

Deformation

Maximum Deformation, Acceleration, Velocity and Displacement Decay

M5.7 Downhole Displacements

M5.7 Downhole Deformations

M7.0 Displacements M5.7

M7.0 Displacements M5.7

M7.0 Deformations M5.7

Deformations M7.0 M5.7

0.01

Comparison of Deformation and PGA, PGV and PGD Decay with Depth

Deformation decays faster with depth than PGA, PGV and PGD.

Maximum Deformations at Depths

Delaney Array	D0-D1 (2.3 m)	D2-D1 (7.6 m)	D3-D2 (14.5 m)	D4-D3 (24.4 m)	D5-D4 (38 m)	D6-D5 (53.2 m)
M7.0	8.70E-03	3.96E-03	2.61E-03	8.67E-04	6.14E-04	3.66E-04
M5.7	2.23E-04	1.16E-04	8.26E-05	6.74E-05	8.76E-05	7.50E-05
	Eureka Array	9.5 m	26 m	44.5 m	96 m	
	1/10/2010 M6.5, R=54 km	1.20E-03	7.60E-04	3.90E-04	2.70E-04	

Concluding Remarks

- Data recorded by downhole arrays with sensors installed at different depths and geologic layers provide important information to study site amplification and other site effects.
- Downhole arrays' recordings obtained during a number of recent earthquakes provide an opportunity to estimate deformation, shear and rotational component of ground motion, and apparently were not previously used for this purpose.
- High dynamic range, synchronized and properly oriented array instrumentation is necessary for reliable calculation of deformations.
- Very large deformations are calculated based on strong-motions at the DPK array during the 2018 M7 Anchorage Alaska earthquake. Such large deformations suggest non-linearity at soft soil layers.

