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An Automatic P-Phase Arrival-Time Picker

by Erol Kalkan

Abstract Presented is a new approach for picking P-phase arrival time in single-
component acceleration or broadband velocity records without requiring detection in-
terval or threshold settings. The algorithm PpgspPicxpr transforms the signal into a
response domain of a single-degree-of-freedom (SDOF) oscillator with viscous damping
and then tracks the rate of change of dissipated damping energy to pick P-wave phases.
The SDOF oscillator has a short natural period and a correspondingly high resonant
frequency, which is higher than most frequencies in a seismic wave. It also has a high
damping ratio (60% of critical). At this damping level, the frequency response
approaches the Butterworth maximally flat magnitude filter, and phase angles are pre-
served. The relative input energy imparted to the oscillator by the input signal is con-
verted to elastic strain energy and then dissipated by the damping element as damping
energy. The damping energy yields a smooth envelope over time; it is zero in the begin-
ning of the signal, zero or near zero before the P-phase arrival, and builds up rapidly
with the P wave. Because the damping energy function changes considerably at the
onset of the P wave, it is used as a metric to track and pick the P-phase arrival time.
The PprasePrcker detects P-phase onset using the histogram method. Its performance
is compared with picking techniques using short-term-average-to-long-term-average ra-
tio, and a picking method that finds the first P-phase arrival time using the Akaike in-
formation criterion. A large set of records with various intensities and signal-to-noise
ratios is used for testing the PpyasePicker, and it is demonstrated that Ppyase Picker
is able to more accurately pick the onset of genuine signals against the background noise
than other pickers and to correctly distinguish between whether the first arrival is a
P wave (emergent or impulsive) or whether the signal is from a faulty sensor.

Online Material: MATLAB script for P-phase arrival time picking.

Introduction

In many seismological applications—including locating
earthquakes, source mechanism analysis, and ground-motion
processing—the onset time of the P-wave phase is needed. In
semiautomatic processing, which is common to many seis-
mic networks, the picking algorithm computes initial picks
and an analyst refines them manually by inspections and cor-
rections, because humans generally pick the P-wave arrival
time more accurately, especially for waveforms with low sig-
nal-to-noise ratio (SNR). This manual process is subjective
and time consuming. Today, handling vast amounts of trig-
gered and continuous data from various seismic networks,
in particular for earthquake early warning and automated
ground-motion processing, requires efficient (less time-
consuming) and equally objective alternatives.

Since the 1980s, numerous techniques have been pro-
posed for detecting and picking arrivals of different seismic
waves. These techniques look for changes in energy, polari-

zation, and frequency content or other metrics of seismic
waves with respect to the background or long-term fluctua-
tions of the corresponding metric. In these techniques,
seismic waves are often filtered in advance. The filtering is
needed to reduce the background noise or strengthen the
signal. The seismic signal is typically strengthened within
predefined (or dynamically identified) frequency bands or
along certain polarization directions (Lomax et al., 2012).

Among P-phase onset time picking techniques, the
short-term-average-to-long-term-average ratio (STA/LTA) has
been the convention since the late 1980s (Allen, 1978, 1982;
Blandford, 1982; Baer and Kradolfer, 1987; Ruud and Huse-
bye, 1992; Tarvainen, 1992; Earle and Shearer, 1994). This
technique is based on comparison between an STA of a char-
acteristic function of the signal and an LTA of this character-
istic function. The absolute value or the square of the signal or
its time derivative is often selected as the characteristic



function. The detection occurs when the STA/LTA ratio ex-
ceeds a predetermined or dynamically specified threshold
value. This technique is well suited for detecting amplitude
changes; however, its accuracy heavily depends on the detec-
tion interval and threshold settings. It also picks up pulse-like
noises, especially those contained in microtremors, unrelated
to the earthquake signal (Akazawa, 2004).

Autoregressive (AR) techniques are also commonly used
for phase picking. These techniques are based on the
assumption that the seismogram can be divided into locally
stationary segments, each modeled as an AR process, and the
intervals before and after the onset time are two different sta-
tionary processes with different statistical properties (Sleeman
and van Eck, 1999; Rastin et al., 2013). To detect an ideal time
instant that splits statistical properties of the subwindow be-
fore the onset (signal containing background noise) from those
of the subwindow after the onset (signal containing seismic
waves and background noise), AR techniques analyze differ-
ent windows of time series. For example, typical seismic noise
is well represented by a relatively low-order AR process,
whereas seismic signals are usually represented by a higher-
order AR process (Leonard and Kennett, 1999). The Akaike
information criterion (AIC) helps to determine the order of the
AR process when fitting a time series with an AR process,
which indicates the model misfit as well as the unreliability
(Akaike, 1974). This method has been used in onset estima-
tion by analyzing the variation in AR coefficients representing
both multicomponent and single-component traces of broad-
band and short-period seismograms (Takanami and Kitagawa,
1988; Leonard and Kennett, 1999). When the order of the AR
process is fixed, the AIC function is a measure for the model
fit. The point where the AIC is minimized determines the
optimal separation of the two stationary time series in the
least-squares sense and thus is interpreted as the phase onset
(Sleeman and van Eck, 1999); this picker is known as
AR-AIC picker (Leonard, 2000). In contrast, Maeda (1985)
calculates the nonparametric AIC function directly from the
seismogram without using the AR coefficients. If there are
multiple seismic phases in a time window, the AIC picker will
choose the stronger phase. On the other hand, the AIC picker
will usually pick an onset for any segment of data, no matter
whether there is a true phase arrival in the time window or not.
Using the segment of the waveform from beginning to the ab-
solute peak value improves the performance of the AIC picker.
The AIC picker can neither distinguish nonearthquake signals
without P phase (e.g., vibration noise in urban areas) nor iden-
tify signals from a faulty sensor (the signals from faulty sen-
sors are often contaminated by mechanical and/or digital
noise; Jones et al., 2016).

Artificial neural networks (e.g., Dai and MacBeth, 1995;
Mousset et al., 1996; Wang and Teng, 1997; Zhao and Ta-
kano, 1999; Gentili and Michelini, 2006), wavelet transforms
(e.g., Anant and Dowla, 1997; Zhang et al., 2003; Hafez
et al., 2010), analysis of wave polarization (Cichowicz,
1993), pattern recognition (Joswig, 1990), hybrid techniques
(such as the combination of energy analysis, differences in
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instantaneous frequency, and an AR representation of the
seismic record; e.g., Bai and Kennett, 2000; Akazawa,
2004), cross correlation of the running-window energy ratios
of the STA/LTA of seismic data (Forghani-Arani ef al., 2013),
and use of higher-order statistics based on skewness and kur-
tosis (Saragiotis et al., 2002; Kuperkoch et al., 2010; Baillard
et al., 2014; Ross and Ben-Zion, 2014) are among other
methods proposed to detect P-wave phases. A common dis-
advantage of these methods is that they require one or more
of the following as a priori: detection interval, threshold set-
tings, an approximate knowledge of the moveout character
for an event, and tuning of picking parameters specific to
intensity and/or frequency content of the signal.

Presented here is a new algorithm for picking the
P-phase arrival time in single-component ground-motion
acceleration or broadband velocity records without requiring
a detection interval or threshold settings. This algorithm,
called PpyasePicker, transforms the signal into a response
domain of a linear-elastic fixed-base single-degree-of-freedom
(SDOF) oscillator with viscous damping, and then tracks the
rate of change (power) of dissipated damping energy to pick
the P-wave phase. To prevent resonance, the SDOF oscillator
has a short natural period (T, = 0.01 s) and a correspond-
ingly high resonant frequency, which is higher than most
frequencies in a seismic wave. It also has a high damping ratio
(¢ = 0.6) similar to short-period seismometers, typically used
to study body waves. At 60% or higher damping ratio, the
frequency response approaches the Butterworth maximally
flat magnitude filter, and phase angles are preserved. This
means that the frequency content of the input signal is carried
to the relative response of the oscillator for P-phase picking,
an important consideration for selecting 7, = 0.0l s
and { = 0.6.

The input energy imparted to the SDOF oscillator by the
seismic signal (base excitation) is converted to elastic strain
energy and then dissipated by the damping element as damp-
ing energy. The damping energy yields a smooth dissipation
envelope over time. It is zero in the beginning of the signal,
zero or near zero before the P-phase arrival, and builds up
rapidly following the P phase. Because the damping energy
function changes considerably at the onset of the signal,
it can be used as a convenient metric to track and detect
the P-phase arrival time even in signals with low SNR.
PpuasePicker detects the P-phase onset in only milliseconds
of the computer’s central processing unit time. Its performance
is compared with the conventional picking techniques based
on (1) STA/LTA (Allen, 1982), (2) the picking method of
Maeda (1985), which finds first P-phase arrival using the
AIC, and (3) manual picking results. In the following, the theo-
retical background of PpyaspPrcker 18 explained first with
examples using six teleseismic records and two three-compo-
nent strong-motion acceleration records. Its systematic evalu-
ation is presented at the end, based on 1652 acceleration and
velocity waveforms with various intensities and SNRs from
the 2014 moment magnitude (M) 6.0 South Napa
(California) earthquake and its M 3.6 aftershock. The list
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Table 1
Abbreviations and Symbols Present in This Article

Abbreviation

or Symbol Definition
c Damping term of single-degree-of-freedom (SDOF)
oscillator
E; Absolute (total) input energy
E; Relative input energy
Ex Absolute (total) kinetic energy
Ex Relative kinetic energy
Eq Elastic strain energy
E, Damping energy
i Histogram bin number
fow Lowest indexed histogram bin
ihigh Highest indexed histogram bin
k Stiffness term of SDOF oscillator
m Mass of SDOF oscillator
M Moment magnitude
M Number of histogram bins
t Time instant
Tp Natural period of damped vibration of SDOF oscillator
T, Natural period of undamped vibration of SDOF
oscillator
u Relative displacement of mass of SDOF oscillator with
respect to base
ug Ground displacement
U, Absolute (total) displacement of mass of SDOF
oscillator
i Relative velocity of mass of SDOF oscillator with
respect to base
ity Ground velocity
i Ground acceleration
it Absolute (total) acceleration of mass of single-degree-
of-freedom oscillator
y Seismic signal (either ground acceleration or ground
velocity)
Vinax Maximum amplitude value of power of damping
energy, y
Ymin Minimum amplitude value of power of damping
energy, y
YR Range of power of damping energy
Ay Histogram bin width
At Sample interval
¢ Damping ratio
@p Cyclic frequency

of abbreviations and symbols used throughout this article is
given in Table 1.

Energy Formulation of Single-Degree-of-Freedom
Oscillator

Figure 1 shows two types of SDOF oscillators with
viscous (velocity dependent) damping idealized as moving
and fixed base. For both oscillators, the equation of motion,
a second-order ordinary differential equation, is

mit, + cit + ku = 0, (1)

in which m is the mass, c is the damping term, and k is the
stiffness term. u, (u, = u + u,) is the absolute (total) dis-

Figure 1. Mathematical models of idealized single-degree-of-
freedom (SDOF) oscillators with viscous damping for (a) absolute
energy formulation (moving base) and (b) relative energy formu-
lation (fixed base).

placement of the mass, u, is the ground displacement,
and u is the relative displacement of the mass with respect
to base (i.e., ground). Equation (1) can be rewritten as

mii + cit + ku = —mii,. (2)

The right side of equation (2) is the excitation function
associated with the ground acceleration (it,). Integrating
equations (1) and (2) with respect to u leads to two different
definitions of seismic input energy. Integrating equation (1)
with respect to u gives the absolute (total) energy formu-
lation of a linear-elastic viscous-damped SDOF oscillator
with moving base (Fig. 1a), subjected to base motion (ii,)
as follows

mlit, + i?

3 —i—/citdu—i—/kudu=/m[iig+ii]dug. (3)

For convenience, the right side of equation (3) can be
rewritten as

/ mliiy + it)du, = A i, + ilitgdr, (4)

in which 7 denotes time. Equation (3) can also be expressed
in a general form, which identifies the different energy com-
ponents as

EK + EC + ES = E[, (5)

in which Ey is the absolute-kinetic energy, E, is the damping
energy, and Eg is the elastic strain energy. The sum of these
terms is equal to energy imparted to the SDOF oscillator,
which is the absolute-input energy (Ey).

As a corollary, integration of equation (2) with respect to
relative displacement of mass () results in relative energy
formulation of a linear-elastic viscous damped fixed-based
SDOF oscillator, shown in Figure 1b as

)
%—i—/chdu—i—/kudu:—/inﬁgdu

__ [ "mitgicdr.  (6)
0



Equation (6) can be expressed in terms of the following
energy components:

Ex + E; + Es = E|, (7)

in which Ey is the relative-kinetic energy and E; is the
relative-input energy. E; in equation (5) represents the work
done by the inertia force (mii;) acting on the mass, which
is equivalent to the work done by the total base-shear force
on the ground displacement. On the other hand, E; in
equation (7) represents the work done on a fixed-base oscil-
lator by an equivalent-lateral force, thereby excluding rigid
body translation effects. The difference between the two en-
ergy formulations (i.e., E; vs. Ey) is a result of the different
definitions of kinetic energy (Ey vs. Ex), whereas damping
(E;) and strain energy (E) terms remain identical in both def-
initions. In a viscously damped SDOF oscillator, the rate of
change (power) of damping energy dissipated for a unit mass
is computed by differentiating E- with respect to time (f) as

e ®)
in which wp is the cyclic frequency, defined as 2z/Tp. Tp is
the natural period of damped vibration related to the natural
period of vibration without damping (7',) by

Tp = To/vV1- . )

The PpyasePicker Algorithm

PpuasePrcker operates on a digital time-series signal
with sample interval Az. This signal may be either an accel-
eration record (it,) or a broadband velocity record (ity) as
output from the recorder without filtering or baseline correc-
tion. The PpyasePicker finds the onset of the P phase by
tracking the power of the damping energy. This energy term
is formulated in a linear-elastic response domain of a fixed-
base SDOF oscillator with viscous damping, as shown in
Figure 1b. To eliminate resonance, the SDOF oscillator with
unit mass has a short natural period (damped natural period
Tp = 0.0115 s, very close to the undamped natural period
T,=0.01 s) and a correspondingly high resonant fre-
quency, which is higher than most frequencies in a seismic
wave. The damping ratio is selected as { = 0.6 (60% of criti-
cal damping) to be similar to short-period seismometers,
which are typically used to study body waves. At this damp-
ing level, the frequency response approaches the Butterworth
maximally flat magnitude filter, and phase angles are pre-
served in the response of the oscillator. With these specific
frequency and damping attributes, the SDOF oscillator re-
turns to the equilibrium position quickly without free vibra-
tion and without contaminating the energy characteristics of
the SDOF response associated with the input motion.

Under seismic excitation, the input energy imparted to
the oscillator through the ground excitation is converted to
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elastic response and dissipated by the damping element.
Thus, the relative motion of the mass (1), and hence relative-
kinetic energy of the SDOF oscillator, becomes negligibly
small. To demonstrate the effects of 7, and { on energy
parameters in equation (7), two SDOF oscillators are used
as examples. The first oscillator has a short period and high
damping ratio (7, = 0.01 s, { = 0.6) as in PpyasePickEr-
The second oscillator has a long period and low damping
ratio (T, = 1s, { =0.1) selected as an end case. These
SDOF oscillators are subjected to a raw acceleration record,
shown in Figure 2a, and the resultant energy parameters are
computed by equation (6). These parameters are plotted side-
by-side in Figure 2b—e. For the short-period oscillator, rela-
tive-input energy (which is the summation of relative-kinetic
energy, elastic strain energy, and damping energy) is mostly
stored and released as strain energy and then dissipated by
viscous damping. The kinetic energy of the oscillator is neg-
ligibly small because the mass barely moves with respect to
the base due to the short vibration period and high damping
ratio. For the long-period oscillator with much lower damp-
ing ratio, however, most of the input energy is converted to
kinetic energy due to the moving mass and then dissipated by
a damping element as damping energy. For both oscillators,
relative energy equals damping energy at the end of the
motion. Because the damping energy is a cuamulative param-
eter, proportional to square of the relative velocity of the
mass (see equation 8), it results in a smooth-envelope func-
tion over time as shown in Figure 2e. It is zero in the begin-
ning of the record, near zero (or flat) before the P-phase
arrival, and builds up immediately following the P phase.
The damping energy function, hence its power, changes con-
siderably at the onset of the signal because background noise
and signal typically have different frequency distributions.
Unlike the long-period oscillator, the oscillator with a short
vibration period is more sensitive to this change (see Fig. 2e).
The long-period oscillator yields delayed and out-of-phase
response. PpyasePicxer makes use of the smoothness attrib-
ute of the damping energy to detect the P-wave phase arrival
time. Note that it is more difficult to detect P-phase onset in a
jagged-time series. For that reason, the input energy is not
used for detection because it is unsmooth due to the contri-
bution of kinetic energy as shown in Figure 2b.

How PpyasePicker Works is explained in detail on a
broadband P-wave record in Figure 3. This low-SNR record,
which is the same record in figure 4 of Lomax ez al. (2012), is
a good example, because it has a clear and longer-period P
onset for a small local event. For detecting the P-phase onset,
Lomax et al. used a modified STA/LTA method, which is based
on the work by Baer and Kradolfer (1987) and Allen (1978,
1982). Their picking results are repeated here for comparison.

To conduct a broadband picking, the first step is to
detrend and filter the raw signal to reduce the noise level. For
this purpose, an acausal (zero-shift) fourth-order band-pass
Butterworth filter is used. The filtered record is detrended by
removing the best straight-line linear trend from the data.
Next, a fixed-base SDOF oscillator with a unit mass is
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Figure 2.

Raw acceleration record of AZ-BZN station with 100 samples/s from the 29 March 2014 M 5.1 (M, moment magnitude) La

Habra earthquake in southern California is used to demonstrate the energy metrics for two SDOF oscillators idealized as a fixed base with a
short period and high damping ratio (7, = 0.01 s, { = 0.6) and with a long period and low damping ratio (7, = 1 s, { = 0.1). Traces show
the following: (a) raw acceleration signal; (b) relative-input energy imparted to the SDOF oscillator; (c) relative-kinetic energy of the moving
mass with respect to base; (d) elastic strain energy; and (e) energy dissipated by viscous damping. Energy is in unit of kg - cm/s?. Note the

smoothness of damping energy in (e).

constructed with 7, = 0.01 s and { = 0.6. Equation (2) is
solved in the time domain to compute the relative velocity
(i) of the mass. Once i is known, equation (6) can be used
to compute the different energy metrics. Figure 3b—e illustrate
the relative input energy, relative kinetic energy, elastic strain
energy, and damping energy time histories, respectively. The
power of damping (dissipated) energy is plotted in Figure 3f,
following equation (8). The next step is to pick the onset time
of P-wave in Figure 3f. As a picking algorithm, the histogram
method (Solomon et al., 2001; Institute of Electrical and Elec-
tronics Engineers [IEEE], 2003) is used. Although one may
use another method, for instance the AIC method, the histo-
gram method was preferred because it does not require any

detection interval or threshold settings. To generate a histo-
gram, the amplitude range is divided into M equal-amplitude
intervals. The amplitude interval is called the histogram bin
width, and M is the number of bins or the histogram size.
The histogram is formed by counting the number of times
a time-series value fits within a particular histogram bin; this
is referred to as the bin count.

The algorithm is described step-by-step in the following:

1. Determine the maximum and minimum amplitudes, V..
and yp,, of the power of damping energy (see Fig. 3f),
which will correspond to lower and upper state levels.

2. Calculate the amplitude range yr of the power of damp-

ing energy uSing YR = Ymax ~ Ymin-
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Figure 3. Noisy signal example of broadband velocity record and the P-wave first-arrival detection result for a small regional event
recorded in 19 September 2010 at ISNet station in Italy with 125 samples/s. Traces are as follows: (a) raw broadband velocity; (b) relative-
input energy imparted to the SDOF oscillator; (c) relative-kinetic energy due to moving mass with respect to base; (d) elastic strain energy;
(e) energy dissipated by damping element; and (f) power of damping energy. Traces (b)—(f) are based on a fourth-pole band-pass Butterworth-
filtered input signal with corner frequencies: high cut = 20 Hz and low cut = 0.1 Hz. Note the low signal-to-noise ratio (SNR) level. The
emergent P first arrival (PO—), marked by a vertical line, matches with the manual pick. Energy is shown in kilograms-count per square
second (kg - count/s?). The color version of this figure is available only in the electronic edition.

3. For the specified number of histogram bins (M), deter- highest-indexed histogram bin (i,ign) With nonzero counts.
mine the bin width Ay as the ratio of the amplitude range 6. Divide the histogram into two subhistograms. The indices
to the number of bins; Ay is found by dividing yg by M. of the lower histogram bins are i;,,, < i < % X (lhigh = flow)s

4. Sort the data values into the histogram bins. and the indices of the upper histogram bins are

5. Identify the lowest-indexed histogram bin (i},,) and ow + % X (high = fiow) < I < ipigh-
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7. The low-state level, which is the mode of the largest bin
within the lower histogram, corresponds to the P-wave
phase, and its onset is determined as the last zero crossing
on the filtered seismogram before the P-wave phase arrival.

Although M = 200 is found to be sufficient for a typical
seismogram by testing a large number of weak- and strong-
motion records with different amplitudes and SNR values,
regional or teleseismic records might need different values
of bin size for good picking results.

To pick the first P-wave arrival, the raw signal in Figure 3a
is band-pass filtered with corner frequencies 20 and 0.1 Hz, a
typical frequency band used for processing seismograms. To
enhance the detection, a narrower frequency band may be re-
quired if the signals have low SNRs, for example, those from
microseismic events (as will be shown later). PpyasePicker
picks the impulsive first arrival (P) at 20 min 33.5 s (marked
by a vertical solid line in Fig. 3), where there is a decisive
change in the energy content between the noise and signal.
This change can be noticed easily on the energy plots in
Figure 3b—d, and it is even more visible on the power plot
in Figure 3f. The sudden change in the energy parameters oc-
curs because the P wave has distinctive higher long-period
energy content than the background noise even though its
amplitude is similar to the noise level, thus it might not be
identified by manual picking; further filtering may be neces-
sary to emphasize the P-wave onset.

Similarly, the picker recovers the longer-period secondary
arrival (P1) at 20 min 34.2 s when the raw signal is processed
with low-pass corner frequency of 10 Hz, revealing more
long-period content. The resulting energy plots are shown in
Figure 4, where the change in energy parameters associated
with the secondary arrival is apparent in Figure b—e, and it
is even more pronounced on Figure 4f. For this particular rec-
ord, the first (P) and second (P1) arrivals picked by the
PprasePicker match those reported in Lomax et al. (2012).

In the next example, six vertical component broadband
velocity records from a small regional event with M 1.1 at
~2.4 km depth that occurred in Decatur, Illinois, on 16 Sep-
tember 2013 are used for testing. To pick the first P-wave
arrival, the raw signals shown in Figure 5 are band-pass
filtered with corner frequencies 10 and 0.5 Hz and then de-
trended. The narrow passband is needed due to the presence
of low- and high-frequency noise. The detection results of
PpuasePicker are marked as vertical solid lines. The manual
picks by a U.S. Geological Survey (USGS) analyst for the six
seismograms (DECO5 through DEC12) are 12.14, 11.81,
11.63, 11.60, 11.96, and 11.79 s, respectively. The difference
between the detection results of PpyaspPicker and manual
picks are 0, 0.04, 0.04, 0.03, —0.03, and O s, respectively. Such
small differences demonstrate an excellent performance of
PpuasePicker for detecting the onset times of P waves in
noisy and low-amplitude signals from the microseismic event.

PpruasePrcker 18 next applied to a three-component
raw acceleration record in Figure 6. This record was ob-
tained from an M 6.1 earthquake that occurred on 5

May 2014 in Thailand. This record is chosen because its
HNI1 component is much noisier than the other two com-
ponents. PpyasePicxer picks the P-phase onset at 61.55,
61.08, and 61.80 s, respectively, for the HN1, HN2, and UP
components (marked by vertical solid lines), where there is
a noticeable change in the energy content at the onset of the
signal. To facilitate comparisons, the damping energy and
its power are normalized in each panel by their correspond-
ing peak values. The AIC picker of Maeda (1985) is also
used for comparison; the AIC picker detects the P-phase on-
set at 60.57, 59.66, and 59.89 s for the HN1, HN2, and UP
components, respectively. The manual picks (conducted by
E. Kalkan) are 60.65, 61.00, and 61.70 s consistent with the
PpuasePicker- The maximum discrepancy between the
manual picks and PpyssePrcker 1S 0.09 s, whereas that for
the AIC picker is 1.91 s.

Automatic picking of S-wave arrivals is challenging due
to contamination of the direct S-wave arrival by the P coda
and converted phases (Ross and Ben-Zion, 2014). The exam-
ples in Figure 6 show that there is a clear jump in damping
energy with the S-wave arrival because the S wave contains
significantly more energy than does the P wave. For exam-
ple, in Figure 6, a clear, sharp jump around 1 min 20 s is
associated with the S-wave arrival (vertical dashed line).
PpuasePicker can be used for tracking the largest jump
in damping energy associated with the S wave; this is, how-
ever, left for future development.

In the third example, a three-component acceleration
record obtained at the NC-HMOB station of the Northern
California Seismic Network during the 24 August 2014
M 6.0 South Napa earthquake is used for further testing
PpuasePicker- Figure 7 shows the HN1, HN2, and UP com-
ponents. This record is selected because its vertical component
is from a faulty sensor and contains noise only. For an auto-
mated processing and dissemination of ground-motion
records, it is essential to identify signals from faulty sensors.
The AIC picker is used again for comparison. The picking re-
sults are marked on the plots. For horizontal components,
PpuasePicker yields almost the exact same picking results
as the AIC picker and returns null picking for the vertical com-
ponent. The reason for null picking is that the damping energy
has a near constant slope due to wide-spectrum noise associ-
ated with the faulty sensor. For this reason, the histogram
method computes a similar mode value for the bins and returns
null picking. On the other hand, the AIC picker yields a false
picking for the vertical component. This picker will usually
pick an onset for any segment of data, no matter whether there
is a true phase arrival in the time window or not (Jones ef al.,
2016). As a result, the AIC picker can neither distinguish non-
earthquake signals without P phase (e.g., vibration noise in
urban areas) nor identify signals from a faulty sensor (the sig-
nals from faulty sensors are often contaminated by mechanical
and/or digital noise). It should be also noted that neither
PpuasePicker nor AIC works properly if data have glitches
or dropouts.
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secondary P arrival (P1+), marked by vertical line, matches with the manual pick. Energy is shown in kilograms-count per square second.
The color version of this figure is available only in the electronic edition.

The above examination demonstrates the accuracy of
the PpyasePicker in determining the P-phase onsets in a
few selected representative examples of acceleration and
broadband velocity records. Its systematic evaluation using
a large set of acceleration and broadband velocity records
is presented next.

Systematic Tests on South Napa Earthquake
Mainshock and Aftershock Data

The quantitative performance of PpyaspPicker 1S com-
pared to that of the standard STA/LTA and AIC pickers and to
manual picking results using broadband velocity and strong-
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Figure 5.  P-wave onset time detection results of PpyssPcxrr for vertical-component broadband velocity records obtained from a small

regional event with M 1.1 on 16 September 2013 in Decatur, Illinois.

Signals were recorded by six U.S. Geological Survey stations with

200 samples/s: (left) raw signals, and (right) fourth-pole band-pass Butterworth-filtered signals with corner frequencies: high cut = 10 Hz and
low cut = 0.5 Hz. The emergent P-phase onset (P0—) detected by PpyasePicker 18 shown by vertical lines. Manual picks are 12.14, 11.81, 11.63,
11.60, 11.96, and 11.79 s for stations DECO5-DEC12, respectively. The color version of this figure is available only in the electronic edition.

motion acceleration data obtained from the 2014 M 6.0
South Napa earthquake and one of its aftershock with
M 3.6, which occurred within three hours of the mainshock.
Table 2 lists relevant information about these two events
including epicenter location, magnitude, and depth.

To improve picking performance, part of the seismo-
gram from beginning to its absolute peak is used for the
AIC picker instead of the whole seismogram; this picker does
not require any picking parameter. For the STA/LTA picker,

the short- and long-term averaging window lengths are taken
as 1 and 8 s of the waveform, respectively. The values of the
STA/LTA ratio that trigger on and trigger off are set as 2 and
1.5, respectively.

Also, it is more difficult to detect seismic onsets in
waveforms with high noise content or low SNRs. Following
Hildyard et al. (2008), the SNR is the ratio between the mean
values of the amplitude squared taken in a 1 s window before
and after the onset time from the manual pick. The SNR was
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Figure 6.  P-phase onset time detection results of PppysgP;cxEr for three-component acceleration record obtained from an M 6.1 earth-

quake on 5 May 2014 in Thailand with 100 samples/s: (left) raw acceleration components; (middle) normalized damping energy; (right)
normalized power of damping energy. Note that the HN1 component is much noisier than the other two components. Damping energy and
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calculated for P-wave arrivals from the unfiltered time series.
The mainshock strong-motion data set contains 740 acceler-
ation waveforms with a mean SNR of 71.29 and a minimum
SNR of 0.61, the mainshock broadband velocity data set has
518 waveforms with a mean SNR of 69.97 and a minimum
SNR of 0.41, and the aftershock broadband velocity data set
has 394 waveforms with a mean SNR of 40.82 and a mini-
mum SNR of 0.19.

Figure 8a maps the epicenter of the mainshock and
locations of strong-motion stations within 9.6-306.2 km
epicentral distance. For the strong-motion data set, the time
differences between the automatic and manual picks are
analyzed to evaluate the accuracy of the automatic pickers.
The author conducted the manual picking of P-phase onset
times for this set. For PpyasrPickEr, the median difference

between the automatic and manual picks is —0.01 £ 0.41 s
(variance = 0.16 s?) (Fig. 8b). For the AIC picker, this
difference is 0.09 £ 0.80 s (variance = 0.64 s?) (Fig. 8c),
whereas for the STA/LTA picker the difference becomes
—0.17 £ 0.77 s (variance = 0.59 s?) (Fig. 8d). The small
median and variance distribution of time differences indicate
that there is little or no systematic shift with respect to
manual picks. The systematic offset is much larger, espe-
cially with the STA/LTA picker, than with PpyasePickEer-
The PpyasePicker results are much closer to manual picks
as compared to those from the other two pickers. For exam-
ple, 65% of the compared P-phase picks made by
PpuasePicker are less than 0.2 s from the manual picks,
compared with 57% using the AIC method and only 36%
using STA/LTA method. The distribution of STA/LTA picks
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Figure 7.  P-phase onset time detection results for three-component acceleration record obtained from the 24 August 2014 M 6.0 South
Napa earthquake in northern California with 200 samples/s: (left) raw acceleration components; (middle) normalized damping energy; and
(right) normalized power of damping energy. Note that the UP component, which is from a faulty sensor, contains noise only. Damping
energy and power plots, normalized by their associated peak values, correspond to band-pass-filtered input signal with corner frequencies:
high cut = 20 Hz and low cut = 0.1 Hz. The emergent P-phase onset results from PpyasrPicxer and Akaike Information Criterion (AIC)
picker are shown by vertical solid and dashed lines, respectively. The picking results coincide for HNE and HNN components. For the UP
component, AIC picker yields a false detection and PpysePicker returns a null picking, marked as N/A on the plot. The color version of this
figure is available only in the electronic edition.

Table 2

Earthquakes Used for Systematic Testing of PpyasePickEr

Date (yyyy/mm/dd) Time (hh:mm:ss.ss) Latitude (°) Longitude (°) Depth (km) Moment Magnitude Event ID

2014/08/24 10:20:44.00 38.21517  —122.31233 11.120 6.02 72282711
2014/08/24 12:47:12.55 38.23833  —122.34250 8.439 3.60 72283201
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shows a trend to negative residuals, indicating that automatic
picks are in front of manual picks. There are also many out-
liers, as indicated by the higher percentage of data populated
at —2 and 2 s. Outliers (missed picks, defined as not being
within 2 s of the manual pick) are mainly due to noise spikes
that were picked by the AIC and/or STA/LTA pickers. The
missed picks decreased from 15.1% for the AIC picker and
7.2% for the STA/LTA picker to 0.9% for PpyssePicker-
Higher SNR values lead to less overall error for all pickers
(Fig. 9).

For the weak-motion data set, the Northern California
Earthquake Data Center (NCEDC) serves the windowed data
and picks for the South Napa earthquake mainshock and
aftershocks. These picks were first obtained by an automatic
picking algorithm based on the STA/LTA method of Allen
(1982) and then manually revised by the USGS analyst. The
results are served at NCEDC without making a distinction
whether picks are from the automated system or after manual
adjustments. Because the benchmark picks were primarily
based on STA/LTA method with revisions, picking results of
PpruasePicker are compared only with those from AIC picker.
In Figure 10a, the station locations within 3.9-299.9 km that
recorded the weak motions of the mainshock are shown. For
this data set, the median difference between the automatic
and manual picks is 0.01 +0.18 s (variance = 0.03 s?) for

STA/LTA PICKER

Os 0.5s 1s
Absolute deviation between manual and automatic picks

0.1 ;
1.5s

Figure 9. Absolute difference between manual and automatic
picking times using PpyasePicker, AIC, and STA/LTA pickers
against the SNR values of strong-motion waveforms obtained from
the 2014 M 6.0 South Napa earthquake. All SNR values beyond 100
are compiled at 100. Data correspond to band-pass-filtered accel-
eration waveforms with corner frequencies: high cut = 20 Hz
and low cut = 0.1 Hz.
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(a) Broadband stations of Northern California Seismic Network within 3.9-299.9 km epicentral distance of the 2014 M 6.0

South Napa earthquake. (b and c) The difference between manual and automatic picking times using PpyasePcxrr and the AIC picker
against percentage of weak-motion waveforms. All values beyond 2 (—2) s are compiled at 2 (—2) s. Data correspond to band-pass-filtered
velocity waveforms with corner frequencies: high cut = 10 Hz and low cut = 0.5 Hz. The number of histogram bins used for plotting data in
(b) and (c) is 30; bin width is smaller in (b) because of smaller variance. The color version of this figure is available only in the electronic

edition.
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Figure 11.
picking times using PpyasePicker and the AIC picker against the
SNR values of weak-motion waveforms obtained from the 2014
M 6.0 South Napa earthquake. All SNR values beyond 100 are
compiled at 100. Data correspond to band-pass-filtered velocity
waveforms with corner frequencies: high cut = 10 Hz and low
cut = 0.5 Hz.

PpruasePicker (Fig. 10b), whereas this difference becomes
—0.03 £ 0.73 s (variance = 0.54 s?) for the AIC picker
(Fig. 10c). Similar to the strong-motion data set, the
PpuasePicker results are again much closer to benchmark
picks; 84% of the compared P-phase picks made by

PpruasePicker are less than 0.2 s from the benchmark picks,
compared with 77% using the AIC method. The missed picks
decreased from 15.7% for the AIC picker to 0.2% for
PpyasePicker- Higher SNR values again result in less error
for both pickers (Fig. 11).

These findings are further validated with the aftershock
velocity data recorded from broadband stations of the Northern
California Seismic Network within 2.67-296.4 km epicentral
distance (Fig. 12a). For this data set, the median difference be-
tween the automatic and manual picks becomes 0.01 £ 0.1 s
(variance = 0.009 s?) for PpyasePicxer (Fig. 12b), whereas
this difference is —0.03 = 0.6 s (variance = 0.35 s2) for the
AIC picker (Fig. 12c). Similar to the mainshock strong- and
weak-motion data sets, the PpysspPicxpr picking results
are again much closer to benchmark picks; 93.9% of the com-
pared P-phase picks made by PpyasePicker are less than
0.2 s from the benchmark picks, compared with 73.5% using
the AIC method. The missed picks decreased from 6.8% for the
AIC picker to 0.76% for PpyasePicxer. Similar to the obser-
vations in Figures 9 and 11, the higher SNR values lead to less
overall error for both pickers (Fig. 13).

Conclusions

Automated identification and detection of seismic
phases are important for earthquake early warning and rapid
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aftershock of the South Napa earthquake. (b and c) The difference between manual and automatic picking times using PpyasePicxer and the
AIC picker against percentage of weak-motion waveforms. All values beyond 2 (—2) s are compiled at 2 (—2) s. Data correspond to band-
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Figure 13.  Absolute difference between manual and automatic
picking times using PpyasePicker and the AIC picker against the
SNR values of weak-motion waveforms obtained from the 2014
M 3.6 earthquake (aftershock of the M 6.0 South Napa earthquake).
All SNR values beyond 100 are compiled at 100. Data correspond to
band-pass-filtered velocity waveforms with corner frequencies:
high cut = 10 Hz and low cut = 0.5 Hz.

processing of large numbers of recordings after major events.
In this article, a new and simple algorithm (PpyasePicker) 1S
presented for detecting onset time of the direct P phase in
single-component acceleration or broadband velocity re-
cords. The algorithm transforms the seismic signal into a

SDOF response domain and then uses the damping compo-
nent of the relative input energy for P-phase picking. The
damping energy provides a smooth-envelope function over
time, on which the P-phase arrival time can be identified
without ambiguity. As compared to conventional picking
methods utilizing an STA/LTA, PpyasePicker Operates with-
out specifying any detection interval or threshold settings.
This means that there is no need for a preparatory study of
observation sites or events. PpyasePrcxer 18 also amplitude
independent, allowing detection of the weak signals’ arrival
times such as those from microseismic events.
PpuasePicker has been tested by applying it to a series
of acceleration and broadband velocity data recorded re-
cently by local networks in northern California, Illinois, Italy,
and Thailand. It is demonstrated that the proposed picker is
able to accurately detect the onset of genuine signals against
the background noise, even in records with a low SNR that
was not detectable with a traditional AIC picker. Unlike the
AIC picker, PpyasePicker 1S capable of correctly distin-
guishing between whether the first arrival is a P-wave (emer-
gent or abrupt) or the signal is from a faulty sensor.
PpuasePicker’s performance has been statistically
evaluated using 740 strong-motion acceleration waveforms
and 518 velocity waveforms from the 2014 M 6.0 South
Napa earthquake and 394 velocity waveforms from its
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M 3.6 aftershock. For the first data set, PpyasePicker
picked as many P onsets as the manual picking, with median
difference of 0.01 £ 0.41 s. This median difference and
standard deviation is less than for the AIC and STA/LTA pick-
ers. The missed picks, defined as not being within 2 s of the
manual pick, decreased from 15.1% for the AIC picker and
7.2% for the STA/LTA picker to 0.9% for PpyaspPicxer- The
broadband velocity data set yielded similar results. For
PprasePicker»> the median difference between the automatic
and manual picks was 0.01 =0.18 s, which is less than that
obtained from the AIC picker. The missed picks decreased
from 15.7% for the AIC picker to 0.2% for PpyssePickEr-
These test results, including those based on the aftershock
dataset, collectively indicate that the number and accuracy
of the picking are significantly high using PpyssePickEr-

The picking algorithm described in this article can be a
powerful tool for automatically picking P-phase onsets with
high precision. PpysspPicxrr has been integrated into the
Automated Processing and Review Interface for Strong Mo-
tion Data (PRISM) software of the U.S. Geological Survey
(Jones et al., 2016) in order to identify the pre-event time
window for systematic and automated processing of large
numbers of accelerograms. The identification of pre-event
duration is important in eliminating background noise and
performing effective baseline corrections. PpyasePicker
has been tested so far for windowed waveform data; its use
for continuous waveform data requires further testing, which
is left for future work.

Data and Resources

PpyasePrcker 1S available for MATLAB (www.
mathworks.com/products/matlab, last accessed March 2016).
Its ) MATLAB function is provided as the electronic supple-
ment to this article. The 2014 M 6.0 South Napa earthquake
mainshock and M 3.6 aftershock broadband seismic data in
miniSEED format are available at Northern California
Earthquake Data Center (http://service.ncedc.org/ncedcws/
eventdata/1/, last accessed May 2016) with event IDs
7228271 and 72283201, respectively. The strong-motion
acceleration records of these events are available at
Center for Engineering Strong-Motion Data (http://www.
strongmotioncenter.org/, last accessed March 2016). The
strong-motion acceleration record used from the M 6.1 earth-
quake from Thailand is available at Incorporated Research In-
stitutions for Seismology (IRIS) (http://ds.iris.edu/ds/, last
accessed March 2016).
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