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Abstract 19 

Precise bearing capacity prediction of circular foundations is essential in civil engineering 20 

design and construction. The bearing capacity is affected by factors such as depth, density of 21 

soil, internal angle of friction, cohesion of soil, and foundation radius. In this paper, an 22 

innovative perspective on a fuzzy inference system (FIS) was proposed to predict bearing 23 

capacity. The uncertainty of fuzzy rules is eliminated by using Z-number theory. The effective 24 

parameters i.e., depth, density of soil, internal angle of friction, cohesion of soil, and foundation 25 

radius were considered as inputs to the proposed model. To compare regression and FIS model 26 

with Z-based FIS, statistical indices such as the coefficient of determination (R2), root mean 27 

square error (RMSE), and variance account for (VAF) were employed. For training and testing 28 

Z-FIS, the R2 was (0.977 and 0.971), the RMSE was (1.645 and 1.745), and the VAF was 29 

(98.549% and 98.138), whereas for the FIS method, the values were (0.912 and 0.904), (5.962 30 

and 6.76), and (90.12% and 88.49%). It should be mentioned that Z theory decreased the 31 

computational time by 89.28% (174.04 s to 18.65 s). The comparison of the statistical 32 

indicators of the presented models revealed the superiority of the Z-FIS model over the FIS. 33 

Notably, sensitivity analysis revealed that the most effective parameters on bearing capacity 34 

are internal angle of friction, depth, and soil density. 35 

Keywords: Bearing capacity; Circular foundation; Z-number theory; Fuzzy inference system; 36 

Prediction.  37 

38 



1. Introduction 39 

In the case of static load on foundation, the bearing capacity has been widely studied by 40 

soil mechanic researches over the past years. The original lessons have been begun by Prandtl, 41 

(1920) and Terzaghi (Terzaghi, n.d.); subsequently, Meyerhof, (1951 and 1974), Brinch 42 

Hansen, (1961 and 1970) and Vesic, (1973) have calculated the static bearing capacity, 43 

considering the results of water surface, geometry, slope, depth, eccentricity, and load 44 

inclination. In parallel, the bearing capacity for seismic condition has often been consaudered 45 

by other methods, such as an equivalent pseudostatic method and reduction coefficients 46 

(Tiznado A & Paillao, 2014). The equivalent pseudostatic technique was used to express the 47 

bearing capacity factors by the dynamic internal friction angle (Puri & Prakash, 2007). 48 

Additionally, Meyerhof, (1951) and Shinohara et al., (1963) used a pseudostatic attitude based 49 

on acceleration in different directions such as vertical and horizontal, as gravity applied on the 50 

structure's center, so that this problem modificated to the static case with eccentric inclined 51 

load (Soubra, 1999). In dynamic load, this seismic capacity has not yet been studied for 52 

cohesive soil, even after Northridge earthquakes in 1994, Kocaeli in 1999, and Chi-Chi in 1999 53 

(Bray & Sancio, (2006), Martin et al., (2004)). Some aspects were not taken into account based 54 

on structural failure on cohesive soil during earthquake, and little research has been done until 55 

now. In the earlier investigations, only the dynamic bearing capacity has been studied in 56 

granular soils under liquefaction. In this situation, Marcuson, (1978) found this phenomenon 57 

as the transformation of granular soil from a solid mode to a liquefied approach based on the 58 

increased pore water pressure, which reduces effective stress absolutely.  59 

One of the most popular foundations is the ring type because of the reduced material, 60 

which has been generally exposed in several structures such as water storage tanks, silos, bridge 61 

piers, transmission towers, chimneys, and TV antennas. In terms of the bearing capacity for the 62 

ring footing, it seems to be that the limited investigations have been carried out in this way. 63 

Small scale modelling on sand soils has been tested to conclude the bearing capacity for ring 64 

footing (Boushehrian & Hataf, 2003; Saha, 1978). Likewise, the stress characteristic method 65 

(SCM) has been well completed to calculate the bearing capacity factor Nɣ for smooth and 66 

rough ring foundations as interacted by sandy soils (Kumar & Ghosh, 2005), but the stress at 67 

the inner and outer edges of the ring has not been simulated. The variation of the friction angle 68 

along the interface of the footing and underlying soil mass has been implied by an approximate 69 

performance. On the basis of FLAC and by assuming an associative flow rule, the bearing 70 

capacity factor Nɣ for smooth and rough ring foundations on sand has been investigated by 71 



Zhao & Wang, (2008). For both flue rules, such as associative and non-associative, the FLAC 72 

program has also been applied to obtain Nɣ when the ring foundation is based on a smooth or 73 

rough type (Benmebarek et al., 2012). The lower and upper bounds of the finite element limit 74 

analysis have been carried out to consider the bearing capacity factors, such as Nc, Nq, and N, 75 

on a ring foundation (Kumar & Chakraborty, 2015). Lately, for undrained conditions, the 76 

bearing capacity factor Nc has been investigated using the FLAC program (Remadna et al., 77 

2017), as well as by the finite element code PLAXIS program (Lee, Jeong, & Lee, 2016; Lee, 78 

Jeong, & Shang, 2016). As noted earlier, the SCM has often been implemented to compute 79 

quite accurate solutions for different geotechnical stability problems (Bakhtavar et al., 2020). 80 

Several studies have been well done to figure out how well ring foundations will be able to 81 

hold up. This has been done through using the plastic stress field approach constructed by some 82 

methods, such as the method of characteristics (Kumar & Ghosh, 2005), limit equilibrium 83 

theory (Karaulov, 2005, 2006), finite difference method (Benmebarek et al., 2012; Zhao & 84 

Wang, 2008), and finite element method (Choobbasti et al., 2010; Lee, Jeong, & Shang, 2016). 85 

The ring plate on sands model has also been used in some tests in the laboratory (Ohri et al., 86 

1997). Besides, some efforts have been completed to analyze the geotechnical stability of ring 87 

foundations on reinforced soil. El Sawwaf and Nazir (2012) also looked at how well the ring 88 

foundation could hold up under loads that were not straight. 89 

For slope situations, the ultimate bearing capacity of a foundation has been performed 90 

using various techniques, such as the limit equilibrium method (Castelli & Motta, 2010; 91 

Mizuno et al., 1960), limit analysis method (Chakraborty & Kumar, 2013; Choobbasti et al., 92 

2010), and the stress characteristic method (Graham et al., 1988). The upper-bound limit 93 

analysis process avoids the elastic-plastic body deformation and directly solves the load and 94 

velocity distribution regarding the limit state, which simplifies the challenging problem. Hence, 95 

it has become the most extensively employed method for researchers to study the ultimate 96 

bearing capacity of the foundation. In this research, the calculation of the ultimate bearing 97 

capacity is mostly based on the academic method. In the case of soil complexity, the uncertainty 98 

of the boundary assumption and the restriction of the calculation means that use of the 99 

theoretical technique to solve the problem or achieve the calculation accuracy is often 100 

problematic. 101 

Researchers in the past often used the simplified foundation for homogeneous soil when 102 

figuring out the ultimate bearing capacity. This can make the ultimate bearing capacity smaller 103 

than it really is. Current research results in the non-homogeneity of the clay soil as an important 104 



influence on the bearing capacity of a foundation on level ground (Gourvenec & Randolph, 105 

2003; Wai & CHEN, 1975). Many techniques, including the method of characteristics (Davis 106 

& Booker, 1973), upper-bound limit analysis method (Al-Shamrani, 2005; Reddy & 107 

Srinivasan, 1970), and numerical analysis method (Lee, Jeong, & Shang, 2016) are applied to 108 

analyze the impact of non-homogeneity on the bearing capacity. Researchers have recently 109 

used optimisation methods (Algin, 2016; Momeni et al., 2014) to figure out how much weight 110 

a foundation can hold. These methods have worked well. 111 

In this paper, a Fuzzy inference system (FIS) is developed to predict  bearing capacity. The 112 

main novely of this study is use Z-number reliability for overcoming uncertainty in the expert 113 

view in the determining fuzyy rules. The proposed approach was first introduced that is capable 114 

of sucssefulness increase accuracy level of models and decrease computaional times. This 115 

perspective of FIS can be updated for other expert-based models. 116 

2. Methodology 117 

2.1. Fuzzy Set 118 

Zadeh (L. A. Zadeh, 1975) firstly proposed the fuzzy set as a mathematical theory to confront 119 

uncertainty and vagueness in real-life world problems. The advantage of fuzzy set theory in the over of 120 

uncertainty and ambiguity of human cognitive processes is evident, and from this perspective, it differs 121 

from the classical notion. Assume X be the universe of discourse, X = {x1, x2, . . ., xn}, a fuzzy set a  of 122 

X is determined by a membership function ( )a x , which maps each component x in X to an actual 123 

number within the interval [0,1]. The function value ( )a x  indicates the degree of membership of x in 124 

a. The higher ( )a x , the bigger the degree of membership for x in a .There have been a lot of concerns 125 

raised about fuzzy sets in various uses; for example, failure mode and effects analysis (Bakhtavar et al., 126 

2021), fuzzy fault tree analysis (Jiskani et al., 2022), mine blasting (Bakhtavar et al., 2017), industry 127 

4.0 (Poormirzaee et al., 2022b, 2022a), occupational hazards in underground mines (Hosseini et al., 128 

2022), risk analysis (Bakhtavar et al., 2020), green mining (Bakhtavar et al., 2019). Fuzzy sets are 129 

introduced briefly in the following definitions. 130 

2. 1. 1. Fuzzy numbers 131 
A fuzzy number demonstrates a unique fuzzy set in the universe of discourse X, which membership 132 

function related to it is both normal and convex. Fuzzy logic employs various types of fuzzy 133 

membership functions including trapezoidal fuzzy numbers (TFNs) and triangular fuzzy numbers 134 

(TrFNs) (as shown in Figure 1). Nevertheless, triangular fuzzy numbers are applied to reveal experts’ 135 

opinions in this research because they are more effective in applications and more practical in improving 136 



reproduction and knowledge processing in a fuzzy environment. Let a  be a TFNs, a =(a1, a2, a3), where 137 

membership function ( )a x  can be determined as: 138 
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where a1, a3, and a2 are the lower bound, upper bound, and the modal value of the fuzzy number a139 

, respectively. 140 

Similarly, the membership of a TrFNs, a , can be defined by a quadruplet (𝑎1, 𝑎2, 𝑎3, 𝑎4) as follows: 141 
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 143 

Figure 1. Fuzzy number: a) TFN, b) TrFN 144 

Assume a = (a1, a2, a3), b = (b1, b2, b3) are two positive TFNs and r is a positive real number; the 145 

arithmetic operations of the TFNs can be performed by: 146 



Addition:  1 1 2 2 3 3, ,a b a b a b a b     (3) 

Subtraction:  1 1 2 2 3 3, ,a b a b a b a b     (4) 

Multiplication:  1 1 2 2 3 3, ,a b a b a b a b  (5) 

Multiplication of any real number r and a 

TFN: 
 1 1 2 2 3 3, ,r b a b a b a b  (6) 

Division: 31 2

3 2 1

, , aa aa b
b b b

 
  
 

 (7) 

 147 

2. 1. 2. Linguistic variables 148 
A linguistic variable refers to a variable whose values are words or sentences in a natural or artificial 149 

language, which is very applicable in trading with too complicated or too ill-defined conditions to be 150 

wisely expressed by conventional quantitative opinions. These variables can also be described in the 151 

form of fuzzy numbers. Common linguistic terms with their fuzzy numbers and crisp value tabulated in 152 

Table 1. Also, Figure 2 illustrates their membership functions for visualization. 153 

Table 1. A scale for linguistic variables and TFNs (Bakhtavar et al. 2019) 154 

Crisp value Linguistic variable TFNs 

1 Very low VL 1 (1,1,3)  

3 Low L 3 (1,3,5)  

5 Medium M 5 (3,5,7)  

7 High H 7 (5,7,9)  

9 Very high VH 9 (7,9,9)  

 155 



 156 
Figure 2. Membership function of criteria 157 

 158 

2. 1. 2. Defuzzification 159 
Defuzzification is a necessary action in the fuzzy process to determine the best nonfuzzy 160 

performance (BNP) value. Several ways for this aim are presented, such as the mean of maxima 161 

(MOM), center of area (COA), and ˛α-cut. Various defuzzification techniques extract various levels of 162 

information. COA method is a practical and straightforward way that does not need to bring any 163 

preferences of decision-makers. Hence, this method is implemented in this study to find out the BNP 164 

value. Let a =(a1, a2, a3) and 0 ( )x a  be fuzzy number and defuzzified value of the fuzzy number a , 165 

respectively. The BNP value of the TFN can be calculated by: 166 

    0 3 1 2 1 1
1( )
3

x a a a a a a      (8) 

 167 

2.2. Z-numer Concept 168 

The initial idea of Z-numbers for modeling uncertain information was first proposed by Zadeh 169 

in 2011 (Zadeh, 2011). Mahler (Mahler, 1968) also proposed the notion of Z-numbers in 1968, 170 

which is different from Z-numbers introduced by Zadeh. Z-numbers are ordered pairs of fuzzy 171 

numbers [𝑍 = (𝐴̃, 𝐵̃)], which is defined as an uncertain variable Z-values by Zadeh. 𝐴̃ as the 172 

first component of Z indicates restriction on a real variable X. Nevertheless, 𝐵̃ as the second 173 

component of Z denotes the reliability of the first component. Zadeh (Zadeh, 2011) defined Z-174 

numbers as follows inherent meaning: 175 



   , ,
AA XZ A B Z A p is B    (9) 

A simple Z-number is shown as Figure 3. 176 

 177 

Figure 3. A simple Z-number 178 

Based on literature reviews, Z-numbers based theories are more reliable compared to 179 

uncertainty problems. Z-number theory can be illustrated by the following example: 180 

The bearing capacity in construction project is reported as follows:  181 

"bearing capacity rate in a depth of 12 meter is about 4355 kg/cm2", very high. This report can 182 

be defined as "X is Z = (A, R)." In contrast, X is the "bearing capacity rate in a depth of 12 183 

meter " expression, A is a fuzzy set that announcements the bearing capacity rate "12 meter", 184 

and R is the reliability level of A if it is "very high" (Equation 5). The probability restriction 185 

can be showed by Equation (10): 186 

R(X) = X   is A (10) 

In which, A indicates probability distribution X. The probability restriction can be better 187 

announcement as: 188 

R(X) ∶ X is A → Poss (X = u) = µA(u) (11) 

In which, u and μA stand the real values of X and membership function of A, respectively. In 189 

this regard, a restriction can be showed for set of A as R(X): 190 

R(X) ∶ X is p (12) 

Where p denotes probability density function of X. Therefore, Equation (11) is rewritten as: 191 



R(X) ∶ X is p → Prob (u ≤ X ≤ u + du) = p(u)du (13) 

 192 

2. 1. 2. Linguistic Z-Number Operations 193 

The operations of Z-numbers are too complex; therefore, Wang et al. (Wang et al., 2017) 194 

presented possible arithmetics operations for Z-numbers. The proposed operations consider 195 

both the flexibility of linguistic variable sets and the reliabilities measure of Z-values. Let 𝑍1 =196 

(𝐴1, 𝑅1) and 𝑍2 = (𝐴2, 𝑅2) be two linguistic Z-numbers. The functions of f* and g* can be 197 

considered from between f1(sl), f2(sl), f3(sl) and f4(sl). Therefore, several operations in the 198 

linguistic Z-numbers environment can be presented as follows: 199 

            1 1* * * * * *
1 2 1 2 1,m mneg z f f A f A g g R g R

 

    (14) 

            
   

1 1
* * * *

1 1 2 2* * * *
1 2 1 2 * *

1 2

,
f A g R f A g R

z z f f A f A g
f A f A

     
        

 
(15) 

   1* *
1 1 1, , 0z f f A R  



   (16) 

          1 1* * * * * *
1 2 1 2 1 2,z z f f A f A g g R g R

 

   (17) 

      1 1* * * *
1 1 1, , 0z f f A g g R  

 

   (18) 

Furthermore, assume 𝑍1 = (𝐴1, 𝑅1) be a linguistic Z-number. The accuracy function and 200 

score function of linguistic Z-numbers is determined as Equations (19) and (20): 201 

      * *
1 1 11A z f A g R    (19) 

     * *
1 1 1S z f A g R   (20) 

Suppose that 𝑍1 = (𝐴1, 𝑅1), 𝑍1 = (𝐴2, 𝑅2) and 𝑍3 = (𝐴3, 𝑅3)  be three linguistic Z-numbers, 202 

and f* and g* be linguistic fuzzy sets. Then, the following properties are true: 203 

1 2 2 1;z z z z    (21) 



1 2 2 1;z z z z    (22) 

 1 2 1 2 , 0;z z z z        (23) 

 1 2 1 2 ;z z z z      (24) 

 1 1 2 1 1 2 1 1 2, 0, 0;z z z           (25) 

 1 21 2
1 1 1 1 2, 0, 0;z z z          (26) 

   1 2 3 1 2 3z z z z z z      (27) 

   1 2 3 1 2 3z z z z z z      (28) 

 204 

2. 1. 2. Converting Z-numbers to crisp numbers 205 

As a more description, we are indicate how Z-number sets translated into regular fuzzy 206 

numbers. Assume ( , )Z A R as a Z-number and let triangular membership functions be as 207 

follows: 208 

  , | [0,1]AA x x   (29) 

  , | [0,1]BB x x   (30) 

Conserning to reliability level of first component of Z-number, second component 209 

(reliabilities) is transformed into a crisp number by using Equation (31): 210 

( )

( )
B

B

x x dx

x dx





 


 (31) 

Then, crisp value of reliabilities are considered in the restriction part of Z-number: 211 



      , | , [0,1]A AA
Z x x x x

       (32) 

Finally, Z-numberS (weighted restriction) converted into the fuzzy numbere 𝑍̃′: 212 

   , | , [0,1]A A A

xZ x x x  
 

       
  

 (33) 

If 𝐴̃ = (𝐿,𝑀1,𝑀2, 𝑈) is a TrFNs, then 𝑍̃′ is determined as: 213 

 1 2, , ,Z L M M U          (34) 

We will show conversions of Z-number, ( , )Z A R , using a numerical example; if the 214 

opinion of an expert (A) and his reliability (R) be follows: 215 

𝐴̃ = (0.5,0.6,0.7,0.8; 1) 216 

𝑅̃ = (0.4,0.5,0.6; 1) 217 

The opinion of Expert can be illustrate to Z-number as 218 

     , 0.5,0.6,0.7,0.8 , 0.4,0.5,0.6Z A R      (35) 

Firstly, the reliability part is transformed to a crisp value as follows: 219 

( )

( )
B

B

x x dx

x dx





 


=0.5 220 

Secondly, the constraint is weighted by reliability (α) as follows: 221 

Z =(0.5,0.6,0.7,0.8; 0.5) 222 

Third, transform the weighted Z-number to regular fuzzy number: 223 

 
 
 

0.5 0.5 0.6 0.5 0.7 0.5

0.707 0.707 0.6 0.707 0.7 0.707

0.354,0.424,0.495,0.566;1

0.5, , , 0.8;1

0.5, , , 0.8;1

Z      

    



 224 



The weighted Z-number after converting to regular fuzzy number is illustared in Figure 4. 225 

 226 

Figure 4. Transforming of Z-number to regular fuzzy number. 227 

 228 

2.3. Fuzzy Inference System 229 

As aforementioned, fuzzy set theory was first introduced by (Zadeh, 1965). This theory 230 

satisfied approximately a mathematical solution to solve complicated judgment problems with 231 

intuitive, imperfect, and inaccurate knowledge, which classical methods are not able efficiently 232 

to explain them. This theory can process all types of information varying from interval-valued 233 

numerical data to linguistics terms (Dubois & Parde, 2000). The obtain of fuzzy models from 234 

observed or estimated information has recently gained increasing attention. Fuzzy sets theory 235 

considers a unsertationy of human decisions and reflect the overview of real world; therefore, 236 

this sets has more applications compared to the classic sets (Shams et al., 2015). The 237 

fuzzification is a process to define membership functions of related to fuzzy variables, which 238 

knowlege of experts is used for determination of membership function. Then, all inputs are 239 

transformed into degree of memberships according to relevant appropriate membership 240 

function (Yagiz & Gokceoglu, 2010). In the fuzzy theory, different types of membership 241 

functions such as sigmoidal (psigmf), gaussian (gaussmf), gaussian combination (gauss2mf), 242 

triangular (trimf), trapezoidal (trapmf), linear s-shaped saturation (linsmf), linear z-shaped 243 

saturation (linzmf), Pi-shaped (pimf), S-shaped (smf), Z-shaped (zmf), difference between two 244 

sigmoidal (dsigmf), and product of two sigmoidal (psigmf) employes to express ligustic terms 245 

(see Figure 5). Fuzzy sets use membership functions to represent mathematically linguistic 246 

terms of uncertainty such as “extremely low (EL)“, “very low (VL)“, “Low (L)“, “medium low 247 



(ML)“, “medium (M)“, “medium high (MH)“, “high (H)“, “very high (VH)“, and “extremely 248 

high (EH)“.  249 

 250 

Figure 5. Various type of membership functions 251 

 252 

FIS is an applicable computational tool capable of decision and classification examinations 253 

(Galetakis and Vasiliou 2010), which consists of three main layers: fuzzification layer, 254 

reasoning engine layer, and defuzzification layer (Figure 6). In the first step, the crisp inputs 255 

are imported into the fuzzifier system, and fuzzy inputs are generated. In this regard, knowledge 256 

bases are employed to system forward. In the second step, different rules are defined, and a 257 

rule base is constructed to use in the system. Then, a database is employed to determine 258 

membership functions. In the third step, fuzzy information is processed in the inference engine 259 

based on a reasoning mechanism, and finally, logic or crisp output is obtained. In fact, fuzzy 260 

rules revealed the relations between input(s) and output(s) data, which structured the FIS model 261 

for describing complicated and imprecise systems. This fuzzy process is performed to construct 262 



a rule-based model, in which fuzzy if-then rules (or implication functions) are used instead of 263 

fuzzy propositions. Therefore, the principle portion of a FIS model is a rule-based model 264 

restructured by combining experts’ knowledge and numerical information. 265 

 266 

Figure 6. Fuzzy inference engine 267 

An element's membership is always crisp when it is part of a classic or ordinary set; thereby, 268 

there are two types of elements: those that belong to a set and those that don't. It suffices to 269 

represent each member of these sets with an only unique membership functions. Whereas, a 270 

sharp boundaries do not defined for the fuzzy sets as a generelized ordinary sets; hence, the 271 

degree of an element in a set can range in the interval [0, 1] (see Figure 7). 272 

 273 

Figure 7. a) Crisp set and b) fuzzy set 274 



The process of combining the individual consequents into a single fuzzy set or final consequent 275 

is called aggregation of rules. Aggregation is the process by which the fuzzy sets (individual 276 

consequents) are combined into a single fuzzy set (final consequent) is named aggregation. 277 

Aggregation occurs before the final defuzzification step by using a maximum operator that 278 

relevant input and output are the truncated output functions and fuzzy sets, respectively. The 279 

aggregation process is widely performed by applying following models (Iphar & Goktan, 280 

2006): 281 

 Mamdani fuzzy model, 282 

 Takagi–Sugeno–Kang fuzzy (TSK) model, 283 

 Tsukamoto fuzzy model, and 284 

 Singleton fuzzy model. 285 

 286 

In the fuzzy logic, Mamdani fuzzy model is one oft he most applicable and known algorithm 287 

among four abovementioned models (Iphar & Goktan, 2006). Based on this model, totally 288 

unstructured set of linguistic heuristics can be transformed into structured algorithms by using 289 

fuzzy sets and fuzzy logic (Mamdani & Assilian, 1975). Mamdani “if-then” rule structure is 290 

generally formed as follows: 291 

If xi is Ail…and xr is Air then y is Bi (i=1, 2, …, k) 292 

where xi stands input parameter, y denotes output parameter and k indicates the number of rules 293 

(Sonmez et al., 2003). 294 

Among different composition methods of Mamdani FIS, Min-Max operation is the most widely 295 

used technique. A Mamdani fuzzy model with two relus is illustrated in Figure 8, in which, “z” 296 

represents overall system output and “x” and “y” are crisp inputs. For each rule, the 297 

consequential fuzzy set is trimmed through the minimum of the prototype fuzzy sets utilizing 298 

the minimum operator. 299 



 300 

Figure 8. The Mamdani FIS using Min-Max composition method 301 

In the FIS model, final step is defuzzification of fuzzy outputs; fuzzy sets is converted into 302 

crisp values. Noteworthy, there exists the various defuzzification methods including: 303 

 Centroid 304 

 Bisector 305 

 Middle of maximum 306 

 Smallest of maximum 307 

 Largest of maximum 308 

The centroid of area (COA) is the most frequently employed technique among other methods 309 

in the FIS (Grima, 2000). The COA method calculated the crisp value as below: 310 

 
 

* Az
COA

Az

z z dz
Z

z dz




 


 311 

where 𝑍𝐶𝑂𝐴∗  specify the crisp values of output (“z”), and μA(z) is the aggregated output 312 

membership function. 313 

 314 



3. Laboratory Tests and Database Preparation  315 
The datasets achieved in the laboratory were used to develop the models in this study. The 316 

device for conducting direct shear test is shown in Figure 9. This device is used to identify soil 317 

resistance parameters such as cohesion and internal angle of friction. The database used for 318 

developing models in this study is tabulated in Table 1. The descriptive statistics of effective 319 

parameters and bearing capacity for 968 data are summarized in this table. Figure 10 represents 320 

correlations between the parameters used for the development models. As can be found from 321 

Figure 10, the correlation between D, DS, IAF and the BC are approximately good with the 322 

carrelations of 0.57, 0.648, and 0.709, respectively, while the correlation between the FR and 323 

CS with the BC are very low with the carrelations of -0.807, and 0.281, respectively. 324 

Furthermore, the correlation between the FR and other parameters are very weak. The 325 

correlation between CS with DS and IAF, D with IAF, and CS with BC were negantive. 326 

 327 

Figure 9. Direct shear test 328 



 329 

Figure 10. The correlations between inputs and output 330 

The frequency histogram of the BC is presented in Figure 11. As can be seen, 303 data are 331 

accompanied by a BC in the interval (645.06,1056.10] kg/cm2; nevertheless, a BC in the 332 

interval (3933.39,4344.43] kg/cm2 is observed in 3 BC data. 333 

 334 

Figure 11. Frequency histogram of the BC 335 

 336 

Table 1. Descriptove statistics of parameters 337 

Parameters Depth Density of soil Internal angle of friction 



Symbol D DS IAF 
Unit m gr/cm3 degree 

 Min:2.5, Mean:7.34, 
 Max:13, Std:3.25 

Min:1.57, Mean:1.76, 
 Max:2.04, Std:0.12 

Min:21.1, Mean:25.83, Max:34.5, 
 Std:2.85 

Parameters Cohesion of Soil Foundation Radius Bearing Capacity 
Symbol CS FR BC 

Unit kg/cm2 m kg/cm2 

 Min:0.03, Mean:0.11, 
 Max:0.2, Std:0.05 

Min:10, Mean:27.88, 
 Max:45, Std:11.83 

Min:234.02, Mean:1214.19, 
 Max:4344.43, Std:613.24 

 338 

 339 

4. Results and Analysis 340 
 341 

4.1. Statistical model for bearing capacity 342 
The multivariate regression (MR) method was used to construct a statistical model. In this 343 

regard, the relationships between effective parameters and output parameter as respectively 344 

independent and dependent parameters are established. In this study, BC is determined by using 345 

product of the five independent parameters, i.e., D, DS, IAF, CS, and FR. The SPSS V. 25 is 346 

employed to obtain a regression predictive model for the forecast of BC (Eq (36)). The 347 

statistical information concerning the constituted predictive model is presented in Table 2. 348 

   
      
4449.441 107.843 618.219  

131.078 85.430 14.579

BC D DS

IAF CS FR

     

      
 (36) 

where D is Depth (m), DS is Density of soil (gr/cm3), IAF is Internal angle of friction (degree), 349 

CS is Cohesion of Soil (kg/cm2), FR is Foundation Radius (m), and BC is Bearing Capacity 350 

(kg/cm2) 351 

 352 

Table 2. MR results for predition of BC 353 

Independentvariable Coefficients Standard Error t Stat  p value 
Intercept -4449.441 97.372 -45.695 0.000 

D 107.843 1.773 60.831 0.000 
DS 618.219 93.322 6.625 0.000 
IAF 131.078 3.908 33.541 0.000 
CS -85.429 124.153 -0.688 0.042 
FR 14.580 0.485 30.030 0.000 

R squared = 1 − (residual sum of squares) / (corrected sum of squares) = 0.725 

 354 



4.2. Fuzzy model for bearing capacity 355 
As beforementioned, the Mamdani structure was used to establish fuzzy model and develop 356 

BC predictive model. The parameters of depth, density of soil, internal angle of friction, 357 

cohesion of soil, and foundation radius were imported as inputs of the fuzzy model to estimate 358 

bearing capacity as model output. 359 

As beforementioned, the Mamdani structure was used to establish fuzzy model and develop 360 

BC predictive model. The parameters of depth, density of soil, internal angle of friction, 361 

cohesion of soil, and foundation radius were imported as inputs of the fuzzy model to estimate 362 

bearing capacity as model output. The fuzzy structure with the imported input and output 363 

parameters in the model is shown in Figure 12. In the first step of FIS modeling, the input 364 

parameters is fuzzified using most fit membership functions. For this aim, gaussian (gaussmf) 365 

and gaussian combination (gauss2mf) membership functions as the most usable membership 366 

functions were applied to fuzzification parameters. 367 

 368 

 369 

Figure 12. Schematic illustration of the fuzzy inference model  370 

 371 

Here, the linguistic terms with nine categories were defined as “extremely low (EL)“, “very 372 

low (VL)“, “Low (L)“, “medium low (ML)“, “medium (M)“, “medium high (MH)“, “high 373 



(H)“, “very high (VH)“, and “extremely high (EH)“. Notably, the degrees of membership for 374 

parameters are selected according to experts' knowledge and experiences. In addition, the 375 

number of membership functions was widely obtained based on the trial and error procedure. 376 

The “underfitting” (requisite accuracy occurs) and “overfitting” (mendacious accuracy occurs) 377 

problems are the consequences that are respectively accrued due to the insufficient and 378 

excessive number of rules. 379 

 380 

Based on abovementioned expression, the membership functions of input paramaters and 381 

output parameters were specified as shown in Figure 13. In the FIS modeling, a total number 382 

of 1,125 rules were applied to developing the Mamdani-based model. It should be mentioned 383 

that this number of rules has been finalized after removing overlapped rules. Finally, the 384 

Mamdani aggregation algorithm as the widest method in FIS was used considering the problem 385 

complexity. Table 3 summarized the some of the fuzzy rules employed in the FIS modeling. 386 

 387 



 388 

Figure 13. Membership functions of parameters 389 

 390 

Table 3. Several examples of if-then fuzzy rules 391 

Rule number Description of if-then rules 
1 If (D is VL) and (DS of soil is L) and (IAF is VL) and (CS is L) and (FR is VL) then (BC is EL) (1) 
65 If (D is VH) and (DS of soil is L) and (IAF is VH) and (CS is L) and (FR is VL) then (BC is MH) (1) 
91 If (D is VL) and (DS of soil is L) and (IAF is L) and (CS is M) and (FR is VL) then (BC is EL) (1) 
117 If (D is L) and (DS of soil is H) and (IAF is M) and (CS is M) and (FR is VL) then (BC is VL) (1) 
134 If (D is H) and (DS of soil is H) and (IAF is H) and (CS is M) and (FR is VL) then (BC is M) (1) 
151 If (D is VL) and (DS of soil is L) and (IAF is VL) and (CS is H) and (FR is VL) then (BC is EL) (1) 
170 If (D is VH) and (DS of soil is L) and (IAF is L) and (CS is H) and (FR is VL) then (BC is L) (1) 
205 If (D is VH) and (DS of soil is M) and (IAF is H) and (CS is H) and (FR is VL) then (BC is ML) (1) 



256 If (D is VL) and (DS of soil is L) and (IAF is M) and (CS is L) and (FR is L) then (BC is VL) (1) 
349 If (D is H) and (DS of soil is L) and (IAF is H) and (CS is M) and (FR is L) then (BC is ML) (1) 
453 If (D is M) and (DS of soil is L) and (IAF is VL) and (CS is L) and (FR is M) then (BC is VL) (1) 
634 If (D is H) and (DS of soil is L) and (IAF is M) and (CS is H) and (FR is M) then (BC is ML) (1) 
685 If (D is VH) and (DS of soil is M) and (IAF is VL) and (CS is L) and (FR is H) then (BC is ML) (1) 
743 If (D is M) and (DS of soil is M) and (IAF is VH) and (CS is L) and (FR is H) then (BC is EH) (1) 
786 If (D is VL) and (DS of soil is M) and (IAF is M) and (CS is M) and (FR is H) then (BC is VL) (1) 
832 If (D is L) and (DS of soil is M) and (IAF is VL) and (CS is H) and (FR is H) then (BC is VL) (1) 
848 If (D is M) and (DS of soil is M) and (IAF is L) and (CS is H) and (FR is H) then (BC is L) (1) 
894 If (D is H) and (DS of soil is M) and (IAF is VH) and (CS is H) and (FR is H) then (BC is H) (1) 
941 If (D is VL) and (DS of soil is H) and (IAF is M) and (CS is L) and (FR is VH) then (BC is L) (1) 
1020 If (D is VH) and (DS of soil is H) and (IAF is M) and (CS is M) and (FR is VH) then (BC is MH) (1) 
1067 If (D is L) and (DS of soil is L) and (IAF is L) and (CS is H) and (FR is VH) then (BC is VL) (1) 
1110 If (D is VH) and (DS of soil is H) and (IAF is H) and (CS is H) and (FR is VH) then (BC is H) (1) 
1123 If (D is M) and (DS of soil is H) and (IAF is VH) and (CS is H) and (FR is VH) then (BC is MH) (1) 
1125 If (D is VH) and (DS of soil is H) and (IAF is VH) and (CS is H) and (FR is VH) then (BC is H) (1) 

 392 

In the last step of FIS modeling, the defuzzification process is performed, in which the fuzzy 393 

values are converted into crisp values using the COA techniques. The rule viewer and fuzzy 394 

reasoning engine of the MATLAB environment are depicted in Figure 14. As can be found, 395 

when input parameters are D=7.75 m, DS=1.81 gr/cm3, IAF=22.3 degree, CS=0.0649 kg/cm2, 396 

and FR=12.7 m, then BC would be 851 kg/cm2, which is very close to measured BC with the 397 

value of 843. 398 

 399 

 400 

Figure 14. An example calculation for the FIS model 401 

 402 

 403 

 404 



4.3. Z-number based Fuzzy model for bearing capacity 405 
As aforementioned, the fuzzy rules are specified based on expert knowledge. Nevertheless, 406 

expert opinions to determine fuzzy rules have uncertainty. Therefore, the membership 407 

functions identified for the output variable deal very insufficient reliability. Therefore, this 408 

study focused on implementing the Z-number concept to overcome the uncertainty of expert 409 

views. In this regard, the reliability level of Z-number is applied in the analyzing process and 410 

the range of 0-100% confidence is specified for expert use. In other words, a particular scale 411 

was defined as tabulated in Table 4 to express the judgments reliability level of experts. The 412 

membership degrees of Z-number linguistic terms are displayed in Figure 15. The confidence 413 

of 0 and 100% are applied for strong reliability and unreliability, respectively. The results can 414 

be significantly improved by this reliability level. 415 

 416 

Table 4. The rules of transformation concerned with linguistic variables of possibilities 417 

Reliability 

Number Linguistic 
terms 

Membership 
function 

1 0% sure (0,0,0.025,0.05) 
2 5% sure (0.025,0.05,0.075,0.1) 
3 10% sure (0.075,0.1,0.125,0.15) 
4 15% sure (0.125,0.15,0.175,0.2) 
5 20% sure (0.175,0.2,0.225,0.25) 
6 25% sure (0.225,0.25,0.275,0.3) 
7 30% sure (0.275,0.3,0.325,0.35) 
8 35% sure (0.325,0.35,0.375,0.4) 
9 40% sure (0.375,0.4,0.425,0.45) 
10 45% sure (0.425,0.45,0.475,0.5) 
11 50% sure (0.475,0.5,0.525,0.55) 
12 55% sure (0.525,0.55,0.575,0.6) 
13 60% sure (0.575,0.6,0.625,0.65) 
14 65% sure (0.625,0.65,0.675,0.7) 
15 70% sure (0.675,0.7,0.725,0.75) 
16 75% sure (0.725,0.75,0.775,0.8) 
17 80% sure (0.775,0.8,0.825,0.85) 
18 85% sure (0.825,0.85,0.875,0.9) 
19 90% sure (0.875,0.9,0.925,0.95) 
20 95% sure (0.925,0.95,0.975,1) 
21 100% sure (0.975,1,1,1) 

 418 



 419 

Figure 15. Membership degree of Z-numbers of transformation rules 420 

In the first phase, the experts first determined 1125 fuzzy rules to develop the Mamdani-based 421 

FIS model. In the second phase, they also expressed their reliability level of the opinions based 422 

on 21 linguistic terms. For this aim, the scale presented in Table 5 was identified to evaluation 423 

the first component of Z- number, Z= (A, B). The Membership degree of TrFNs for A 424 

component is depicted in Figure 16. It should be mentioned that the scale shown in Table 4 is 425 

used for determining B component of Z.  426 

 427 

Table 5. The rules of transformation concerned with linguistic variables of restrictions 428 

Evaluation (A component) 
Linguistic term Fuzzy number 

Extremely low (EL) (0,0,285.4,696.4) 
Very low (VL) (285.4,696.4,799.2,1210) 

Low (L) (799.2,1210,1313,1724) 
Medium low (ML) (1313,1724,1827,2238) 

Medium (M) (1827,2238,2341,2752) 
Medium high (MH) (2341,2752,2854,3265) 

High (H) (2854,3265,3368,3779) 

Very high (VH) (3368,3779,3882,4293) 

Extremely high (EH) (3882,4293,4500,4500) 

 429 



 430 

Figure 16. Membership degree of TrFNs identified for A component 431 

 432 

Therefore, each member of Tables 4 and 5 is transformed into a regular number by repeating 433 

the procedure presented in "Converting Z-numbers to crisp numbers" section (Eq. (31)-(35)). 434 

Table 6 presents a sample of Z-calculation for the same rules summarized in Table 3. 435 

Combining translation terms (Table 5) and reliabilities related to constraints (Table 4) results 436 

in the conversion rules of linguistic variables of experts of Z-numbers. A fuzzy rating is then 437 

created based on these results. Suppose n criteria are met by the object of research for the 438 

restriction. Accordingly, the number of membership functions of output parameters is modified 439 

based on the new Z-relus. The 59 Z-based membership functions were defined for BC as shown 440 

in Figure 17. In this step, the new Z-based FIS is developed for predicting BC.  441 

 442 

Table 6. Judgment of expert with reliability information 443 

Rule 
number  A B Membership 

function of A 
Membership 
function of B 

Linguistic 
phrase Acronym a √𝑎 Z-number 

1  EL 90% (0,0,0.05,0.1) (0,0,0.15,0.25) Extremely low -
90% sure (EL-90%) 0.913 0.955 (0,0,272.628,665.235) 

65  MH 80% (0,0,0.05,0.1) (0.15,0.25,0.35,0.45) Medium high-
80% sure (MH-80%) 0.813 0.901 (2110.149,2480.619,2572.561,2943.031) 

91  EL 100% (0,0,0.05,0.1) (0.35,0.45,0.55,0.65) Extremely low -
100% sure (EL-100%) 0.996 0.998 (0,0,284.805,694.948) 

117  VL 90% (0,0,0.05,0.1) (0.55,0.65,0.75,0.85) Very low -90% 
sure (VL-90%) 0.913 0.955 (272.628,665.235,763.435,1155.851) 

134  M 90% (0,0,0.05,0.1) (0.75,0.85,0.95,1) Medium-90% 
sure (M-90%) 0.913 0.955 (1745.239,2137.846,2236.237,2628.844) 

151  EL 90% (0.05,0.1,0.2,0.25) (0,0,0.15,0.25) Extremely low -
90% sure (EL-90%) 0.913 0.955 (0,0,272.628,665.235) 

170  L 90% (0.05,0.1,0.2,0.25) (0.15,0.25,0.35,0.45) Low -90% sure (L-90%) 0.913 0.955 (763.435,1155.851,1254.241,1646.849) 

205  ML 80% (0.05,0.1,0.2,0.25) (0.35,0.45,0.55,0.65) Medium low -
80% sure (ML-80%) 0.813 0.901 (1183.522,1553.993,1646.836,2017.306) 

256  VL 90% (0.05,0.1,0.2,0.25) (0.55,0.65,0.75,0.85) Very low -90% 
sure (VL-90%) 0.913 0.955 (272.628,665.235,763.435,1155.851) 
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349  ML 95% (0.05,0.1,0.2,0.25) (0.75,0.85,0.95,1) Medium low -
95% sure (ML-95%) 0.963 0.981 (1288.146,1691.366,1792.416,2195.637) 

453  L 100% (0.2,0.25,0.3,0.35) (0,0,0.15,0.25) Low -100% 
sure (L-100%) 0.996 0.998 (797.533,1207.477,1310.262,1720.405) 

634  ML 95% (0.2,0.25,0.3,0.35) (0.15,0.25,0.35,0.45) Medium low -
95% sure (ML-95%) 0.963 0.981 (1288.146,1691.366,1792.416,2195.637) 

685  ML 90% (0.2,0.25,0.3,0.35) (0.35,0.45,0.55,0.65) Medium low-
90% sure (ML-90%) 0.913 0.955 (1254.241,1646.849,1745.239,2137.846) 

743  EH 90% (0.2,0.25,0.3,0.35) (0.55,0.65,0.75,0.85) Extremely 
high-90% sure (EH-90%) 0.913 0.955 (3708.275,4100.882,4298.619,4298.619) 

786  VL 90% (0.2,0.25,0.3,0.35) (0.75,0.85,0.95,1) Very low -90% 
sure (VL-90%) 0.913 0.955 (272.628,665.235,763.435,1155.851) 

832  VL 90% (0.3,0.35,0.45,0.5) (0,0,0.15,0.25) Very low -90% 
sure (VL-90%) 0.913 0.955 (272.628,665.235,763.435,1155.851) 

848  L 90% (0.3,0.35,0.45,0.5) (0.15,0.25,0.35,0.45) Low -90% sure (L-90%) 0.913 0.955 (763.435,1155.851,1254.241,1646.849) 

894  MH 90% (0.3,0.35,0.45,0.5) (0.35,0.45,0.55,0.65) Medium high -
90% sure (MH-90%) 0.913 0.955 (2236.237,2628.844,2726.28,3118.887) 

941  VL 90% (0.3,0.35,0.45,0.5) (0.55,0.65,0.75,0.85) Very low -90% 
sure (VL-90%) 0.913 0.955 (272.628,665.235,763.435,1155.851) 

1020  MH 65% (0.3,0.35,0.45,0.5) (0.75,0.85,0.95,1) Medium high -
65% sure (MH-65%) 0.663 0.814 (1905.436,2239.966,2322.988,2657.517) 

1067  VL 90% (0.45,0.5,0.55,0.6) (0,0,0.15,0.25) Very low -90% 
sure (VL-90%) 0.913 0.955 (272.628,665.235,763.435,1155.851) 

1110  MH 100% (0.45,0.5,0.55,0.6) (0.15,0.25,0.35,0.45) Medium high-
100% sure 

(MH-
100%) 0.996 0.998 (2336.118,2746.261,2848.048,3258.191) 

1123  MH 100% (0.45,0.5,0.55,0.6) (0.35,0.45,0.55,0.65) Medium high-
100% sure 

(MH-
100%) 0.996 0.998 (2336.118,2746.261,2848.048,3258.191) 

1125  MH 100% (0.45,0.5,0.55,0.6) (0.55,0.65,0.75,0.85) Medium high-
100% sure 

(MH-
100%) 0.996 0.998 (2336.118,2746.261,2848.048,3258.191) 

 444 

 445 

Figure 17. Z-based Membership functions of BC 446 

 447 

4.3. Sensitivity analysis 448 
The sensitivity analysis is performed to determine the most influential input parameters on 449 

output parameter(s). In this study, the impact of each input parameter on BC was specified 450 

using the cosine amplitude method. The sensitivity is evaluated through a factor, namely 'r' can 451 

be calculated as follows: 452 
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In which, xi stands input parameters, xj indicates output parameter(s), and n is the number of 453 

data. The impact value of each inputs on BC is illustrated in Figure 18. As can be seen, IAF, 454 

D, and DS have the most impact on BC. 455 

 456 

 457 
Figure 18. Sensitivity alaysis of input parameters 458 

 459 

5. Results 460 
In this study, 968 data for BC were estimated through Z-FIS, FIS, and MR Methods. Tthe 461 

dataset is first splited into two categorires: training (80% of data) and testing (20% of data). 462 

Next, the three statistical indicators--coefficient of determination (R2), root-mean-squared error 463 

(RMSE), and value account for (VAF)--were calculated to compare the developed models with 464 

FIS and MR. The indicators are calculated as follows: 465 
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Where Oi and Pi are real values and estimated amounts, respectively; iP  is the average of the 466 

estimated values, and n is the number of all data. The most accurate model yields respectively 467 

1, 0, and 100 for R2, RMSE, and VAF. 468 

The estimated BC using Z-FIS and FIS compared to the measured one for training and testing 469 

parts is displayed in Figures 19 and 20, respectively. As shown, the proposed Z-FIS model 470 

presents the highest accuracy for estimating BC as compared to the FIS. The R2 values of 0.977 471 

and 0.971 show the superiority of the FIS model Z-FIS model in estimating the BC. Whilst, 472 

the value of 0.912 and 0.904 are achieved for FIS method. Furthermore, the values of other 473 

indicators are tabulated in Table 7. The values of RMSE and VAF for training and testing Z-474 

FIS is better than the FIS model. In Table 7, the computational time of these models is also 475 

specified. The models were developed in the MATLAB environment and a PC (Intel Core 476 

(TM) i3-5010U CPU -2.10 GHz, with 6 GB of RAM, Windows 10).  477 

 As shown in Table 7, the computational time for Z-FIS was 18.65 s; while, this value for FIS 478 

model was 159.98 s. Therefore, the proposed approach not only decreased the computational 479 

time (89.28%) but also increased accuracy. It can be concluded that the proposed model 480 

outperforms the FIS method in estimating the BC. 481 

 482 

 483 



 484 

  485 

Figure 19. Correlation between measured and predicted BC in training (above) and testing 486 

(below) Z-FIS. 487 
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  489 

 490 

Figure 20. Correlation between measured and predicted BC in training (above) and testing 491 

(below) FIS. 492 

Table 7. Performance indices of the predictive models for all datasets 493 

Predictive model 
Performance indices 

Computational 
Time (s) Train Testing 

R2 RMSE VAF R2 RMSE VAF 
FIS 0.912 5.962 90.118 0.904 6.76 88.493 174.04 
Z-FIS 0.977 1.645 98.549 0.971 1.745 98.138 18.65 
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6. Conclusions 495 

Uncertainty always poses problems to engineering projects. Artificial intelligence methods that 496 

involve expert opinions have associated with reliability. The  fuzzy inference system (FIS) is 497 

one of the methods in which the fuzzy rules used are determined based on expert opinions. 498 

Therefore, it is obvious that there is uncertainty in it. This paper presents a reliability-based 499 

FIS model to predict bearing capacity (BC) based on Z-number concept in civil projects by 500 

accounting for uncertainties. In this regard, 968 BC data points were measured, and the most 501 

effective independent parameters of estimations were identified. These parameters are  depth, 502 

density of soil, internal angle of friction, cohesion of soil, and foundation radius. A multiple 503 

regression model was constructed to establish relationships between such parameters and the 504 

BC values. The obtained results of the proposed model were compared to conventional FIS. 505 

The predictive models were constituted by utilising five input parameters (i.e., deep, density of 506 

soil, internal angle of friction, cohesion of soil, and foundation radius) to predict BC. It is shown 507 

that the Z-FIS model performance is significantly better than the FIS model with the R2 of 508 

0.977 and 0.971 for training and testing part, rspectively. A sensitivity analysis showed that the 509 

angle of friction has the most effect on the BC estimations. 510 
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