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Abstract 
 
Nonlinear static analysis using pushover procedures are becoming increasingly 
common in engineering practice for seismic evaluation of building structures. Various 
invariant distributions of lateral forces are recommended in FEMA-356 (2000) to 
perform a pushover analysis.  However, the use of these invariant force distributions 
does not adequately represent the effects of varying dynamic characteristics during 
the inelastic response or the influence of higher modes.  More recently, new 
approaches to combining lateral load distributions have been proposed to overcome 
some of the drawbacks in FEMA procedures.  In this paper the validity and 
applicability of several lateral load configurations are assessed by comparison of the 
pushover response of eight and twelve story steel moment frame buildings with 
benchmark solutions based on nonlinear time history analyses.   The study reveals the 
suitability of using unique modal combinations to determine lateral load 
configurations that best approximate the inter-story demands in multistory frame 
buildings subjected to seismic loads. 
 
Introduction 
 
Although current seismic design practice is still governed by force-based design 
principles, a common trend in structural earthquake engineering practice is to use 
performance-based seismic evaluation methods for the estimation of inelastic 
deformation demands in structural members.  A widely used and popular approach to 
establish these demands is a “pushover” analysis in which a model of the building 
structure is subjected to an inverted triangular distribution of lateral forces. While 
such a load distribution may be adequate for regular and low-rise structures whose 
response is primarily in their fundamental mode, it can produce misleading results for 
structures with significant higher mode contributions.  This accentuates the need for 
improved procedures that addresses current drawbacks in the lateral load patterns 
used in pushover analyses. New lateral load configurations using modal combinations 
originally proposed by Kunnath (2004) and some variations of the approach are 
investigated in this paper.  In all cases, the computed peak response is compared to 
FEMA-based patterns and to results from nonlinear time-history analyses. 
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Description of Buildings Used in Evaluation 
 
Two special moment resisting steel frame buildings were selected as representative 
case studies to carry out the evaluation of different later load distributions. The 
building designs are based on a configuration presented in the SEAOC Seismic 
Design Manual (SEAOC, 2000). The original design presented in the manual pertains 
to a four-story building. The building’s lateral force resisting system is composed of 
steel perimeter moment resisting frames (MRF).  
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Figure 1. Structural details of 8 and 12 story buildings (units in meters) 
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In this study, the same floor plan was extended to eight and twelve stories. These 
buildings are 37.5 m (123’) by 56 m (200’) in plan and 33.4 m (109.5’) and 50 m 
(163.5’) in elevation for eight and twelve story cases, respectively. In the north-south 
(N-S) direction the interior bays are 8.5 m (28’) and exterior bays are 6m (19.5’) with 
a total of five bays. The floor-plan and elevation view of the building are illustrated in 
Figure 1.  Also shown in this figure are the member sizes for the 8 and 12 story 
buildings. 
 
The design roof dead load is 939 tons (2066 kips) and the dead load of each of the 
remaining floors is 1016 tons (2235 kips).  The yield strength of steel is assumed to 
be fy = 345 Mpa (50 ksi) for all structural members. Since the plan of structures is 
essentially symmetric, only a single frame in the transverse direction (line A in Figure 
1) is analyzed. Composite action of floor slabs is not taken into consideration. Since 
the intent of the SEAOC design manual is to simply illustrate the design process, the 
final design presented in the manual is not optimized. In the present study, the 
SEAOC design was modified to result in optimized member sizes that conform to the 
requirements of the UBC (1997) provisions. The design base shears for the eight and 
twelve story structures are approximately 4.8% of their respective building weights. 
 
Ground Motions 
 
In order to establish a benchmark response to examine the validity of the different 
pushover procedures based on invariant load distributions, nonlinear time-history 
analyses were performed on the same set of buildings. The seismic excitation used for 
nonlinear time history evaluations is defined by a set of seven strong ground motions. 
These ground motion records are recommended by ATC-40 (1996). All ground 
motions were recorded from California earthquakes having a magnitude range of 6.6 
to 7.5 at soil sites and at distances of 4.5 to 31 km. Details of these records are 
presented in Table 1, and their five-percent damped elastic acceleration and 
displacement response spectra along with their median spectra are presented in Figure 
2.  
 
Table 1. Details of ground motion recordings 
Eq. No Magnitude Year PGA (g) Recording StationEarthquake Distance (km) *

1 6.6 1971 16.5 0.26San Fernando Station 241
2 6.6 1971 18.3 0.12San Fernando Station 458
3 7.1 1989 17.2 0.18Loma Prieta Hollister, South & Pine
4 7.1 1989 4.5 0.32Loma Prieta Gilroy #2
5 7.5 1992 31.0 Landers 0.15Yermo
6 7.5 1992 10.0 Landers 0.28Joshua Park
7 6.7 1994 23.7 0.26Northridge Century City LACC North

* Closest distance to fault  
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Figure 2. (a) Pseudo spectral acceleration spectra, and (b) Spectral displacement 
spectra 
 

Lateral Load Configurations  
 

Several lateral load cases were evaluated in this study.  The first set of three patterns 
is derived from FEMA-356.  The following notations are used to describe these 
patterns: 
 
NSP-1: The buildings are subjected to a lateral load distributed across the height of 
the building based on the following formula specified in FEMA-356: 
 

                               *
*

k
x x

x k
i i

W hF V
W h

=
∑

             (1) 

 
In the above expression, Fi is the applied lateral force at level ‘x’, W is the story 
weight, h is the story height and V is the design base shear. This results in an inverted 
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triangular distribution of the lateral load when the period-dependent power k is set 
equal to unity.   
 
NSP-2: A uniform lateral load distribution consisting of forces that are proportional 
to the story masses at each story level.  
 
NSP-3: A lateral load distribution that is proportional to the story shear distribution 
determined by combining modal responses from a response spectrum analysis of the 
building using the appropriate ground motion spectrum. Herein, we utilized the BSE-
2 hazard level design spectrum (Figure 3) for calculation of story shear forces.  
 
The next set of lateral load configurations involved a combination of modes as 
proposed in Kunnath (2004). The modal combination procedures involve identifying 
appropriate modes to include in the analysis and the manner in which the combination 
will be carried out. Two different methods of combination were used in this study. 
These methods require an eigenvalue analysis of the structure to be carried out at the 
initial elastic state and possibly again in their inelastic states.  
 
Modal Combination Procedure 1, (MCP-1): In this procedure the spatial variation of 
applied forces can be determined from Equation-1.  
 

                                  )T,(S m nnannj ζα ΦΓΣ= nF      (1) 
 
where nα  is a modification factor that can assume positive or negative values; Φ is 
the mode shape vector corresponding to mode n; is the spectral acceleration at the 
period corresponding to mode n; and 

n

aS

 
                  Γ  in which     (2) [ ] n

T Mm /})]{[( ιΦ= ]][[][ ΦΦ= mM T
n

 
If only the first two modes were combined, then Equation 1 would have the following 
form: 

 
                  )T,(S )T,(S 22a22211a111j ζαζα ΦΓ±ΦΓ= mmF               (3) 

   
Therefore the procedure requires multiple pushover analyses wherein a range of 
modal load patterns are applied. In order to arrive at estimates of deformation and 
force demands, it is necessary to consider peak demands at each story level and then 
establish an envelope of demand values for use in performance based-evaluation. 
 
Modal Combination Procedure 2, (MCP-2):  An alternative approach to the above 
combination scheme is also investigated.  Here, the lateral forces are determined in a 
similar manner to the previous technique for each independent mode and then 
combined using an appropriate combination rule such as SRSS. The individual 
invariant load pattern is computed from the following expression:  
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                                      ( )jSWF aiijjij φΓ=                  (4) 
 

where i is the floor number and j is the mode number.  The key aspect of this 
procedure is the varying target displacement for each lateral loading case. Since the 
first mode behavior of a structure is generally more dominant than the higher modes, 
the calculated target displacement is kept constant for the first mode and scaled for 
the other modes based on their corresponding spectral displacement values obtained 
from response spectrum analysis (Figure 2b). Then the pushover procedure is applied 
considering each individual invariant load distribution based on mode shapes. Further 
details on this procedure are given elsewhere (Kalkan et al., 2004) and only 
representative results are presented in this paper.  
 
Details of Evaluation Procedure 
 
For the pushover analyses, two-dimensional computer models of each building were 
developed for use in OpenSees (2003). The program utilizes the layered ‘fiber’ 
approach for inelastic frame analysis. It has also the feature of representing the spread 
of inelasticity along the member length as well as section level. In the finite element 
domain, all members were simulated as nonlinear beam-column elements that 
accounts for axial-moment interaction. The target displacement for each building 
model was computed using the provisions in FEMA-356. Accordingly the site-
specific spectrum corresponding to BSE-2 hazard level was used (Figure 3). 
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Figure 3.  Response spectrum for BSE-2 hazard level 

 
 
The target displacements of 1.07m (42.5”) and 1.30m (51.0”) were computed using 
Equation (3-15) in FEMA-356 for the 8 and 12-story buildings, respectively. Each 
building model was subjected to the different lateral load configurations outlined 
above.  These lateral loads were incrementally applied to structures till the roof node 
reached the specified target displacement.  
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Summary of Results 
 
Figure 4a-4b and 7a-7b show the peak displacement and peak inter-story drift profiles 
obtained from nonlinear time history analyses of the seven ground motions for 8 and 
12 storey structures, respectively. For transient analyses, records were scaled so that 
their peak displacements are comparable to target displacements used in pushover 
analyses. The median and 84 percentile curves of peak displacement and inter-story 
drift profiles are presented in Figures 5a-5b and 8a-8b for two of the buildings. These 
results are next used as benchmark solutions for comparing pushover analyses results.     
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Figure 4. Nonlinear time history analysis results for 8-story building; (a) Roof 
drift ratio; (b) Inter-story drift ratio 
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Figure 5. Nonlinear time history analysis results for 8-story building; Median 
and 84 percentile curves of (a) Roof drift ratio; (b) Inter-story drift ratio 
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Comparison of results (Figures 6a and 9a) reveal that peak displacements are 
generally well represented by FEMA NSP-1 procedure that is closely analogous to 
the elastic first mode loading pattern. The remaining two patterns (NSP-2 and 3) 
overestimated the peak displacement at almost all levels. The plot of peak inter-story 
drift, on the other hand, clearly highlights the inability of FEMA load patterns to 
predict this critical design parameter (Figures 6b and 9b). An important consideration 
in evaluating a pushover method, therefore, is its ability to predict inter-story drifts 
rather than roof displacements. Consequently, the concept of a roof drift ductility 
factor is not meaningful in the design or assessment of structures since the controlling 
parameter may be local story failure mechanism.  
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Figure 6. Nonlinear static pushover analysis results for 8-story building; (a-b) 
FEMA procedures; (c) Modal combination procedures 

 
 

 
 

0

1

2

3

4

5

6

7

8

9

10

11

12

0.000 0.010 0.020 0.030

Roof Drift Ratio

St
or

y 
Le

ve
l

Eq-1
Eq-2
Eq-3
Eq-4
Eq-5
Eq-6
Eq-7
Median

0

1

2

3

4

5

6

7

8

9

10

11

12

0.000 0.020 0.040 0.060

Interstory Drift Ratio

St
or

y 
Le

ve
l

Eq-1
Eq-2
Eq-3
Eq-4
Eq-5
Eq-6
Eq-7
Median

(a) (b)

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Nonlinear time history analysis results for 12-story building; (a) Roof 
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It is clear from the findings reported here that the proposed modal-combination 
procedures for capturing the inter-story drifts are significantly better than those of 
single mode nonlinear static procedures (Figures 6c and 8c).   
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Figure 8. Nonlinear time history analysis results for 12-story building; Median 
and 84 percentile curves of (a) Roof drift ratio; (b) Inter-story drift ratio 
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Figure 9. Nonlinear static pushover analysis results for 12-story building; (a-b) 
FEMA procedures; (c) Modal combination procedures 

 
Conclusions 
 
Given the increasing use of nonlinear static pushover analysis in engineering practice, 
the aim of the present paper is to develop alternative multi-mode pushover analysis 
procedures in an attempt to better estimate the critical inelastic response quantities 
such as inter-story drift and plastic hinge rotations. Various practically applicable 
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 10

modal combination techniques proposed for that purpose, and these procedures 
intentionally avoid the complexity of adaptive methods by using invariant load 
patterns. 
 
This study also indicates that simple pushover methods such as those recommended 
in FEMA-356 are incapable of predicting the story level at which the critical demands 
occur.  On the other hand, the results of modal combination procedures based on our 
ongoing research appear to be promising in terms of better estimating the peak values 
of the major inelastic response quantities such as lateral displacement, inter-story 
drifts, and plastic hinge rotations (not reported here).  The validity of the proposed 
procedures should be evaluated through statistical studies considering various 
structural systems and ground motions.  
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