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INTRODUCTION

Previous-generation ground-motion attenuation relations (e.g., 
Abrahamson and Silva 1997; Boore et al. 1997; Campbell 1997; 
Sadigh et al. 1997) were designed to predict ground motion at 
distances less than 100 km from an earthquake fault. As proba-
bilistic and deterministic seismic hazard analysis concepts have 
become more prevalent in performance-based seismic design, 
these relations have been used in practice much beyond their 
distance limitation. Realizing the engineering needs for pre-
dicting ground motions at distances farther than 100 km, the 
Next Generation Attenuation (NGA) relations project tar-
geted a distance range up to 200 km (Power et al. 2006). For 
seismic hazard analysis in the western United States (WUS), 
200 km is a sufficiently large distance to quantify design-basis 
hazard level from known active faults due to relatively fast 
attenuation of ground motion. For the central and eastern 
United States (CEUS), ground motion attenuates more slowly, 
yet design of critical infrastructures in the CEUS (e.g., nuclear 
power plants) requires computation of seismic hazard from dis-
tant large events. Thus, the recently initiated NGA-East proj-
ect for CEUS set a goal to design ground-motion attenuation 
models applicable to 1,000 km. The objective of this article is 
to revisit the commonly used empirical approach to ground-
motion attenuation modeling and compare it with an alterna-
tive modular filter-based approach that can be effectively used 
for predicting ground motion at near- (<10 km), intermediate- 
(~10 km to 100 km), and far-field distances (>100 km). In this 
latter approach, each filter is calibrated separately to represent 
a certain physical phenomenon affecting seismic radiation 
from the source. We demonstrate that the modular filter-based 
approach provides accurate (that is, expected median predic-
tion without significant bias) and efficient (that is, relatively 
small standard error of prediction) predictions. We also present 
our peak ground acceleration (PGA) based predictive model 
for 5% damped spectral acceleration (SA) ordinates as a con-
tinuous function of period.

BRIEF HISTORY OF MATHEMATICAL 
REPRESENTATION OF GROUND-MOTION 
ATTENUATION

A general ground-motion (GM) prediction equation is:

  GM = f (M , R ,C )  (1)

where M is a moment magnitude (local magnitude in earlier 
studies), R is a closest distance to the fault (epicentral distance 
in earlier studies, or Joyner-Boore (RJB) distance), and C is a set 
of independent parameters representing style of faulting, shal-
low site, deep sediment (that is, basin), directivity, and other 
physical effects. 

Strong ground-motion attenuation relations in seismol-
ogy date back to the 1960s (Esteva and Rosenblueth 1964). 
A summary of attenuation relations developed since then 
is given in Douglas (2001, 2002). As was stated by Bolt and 
Abrahamson (1982), the first critical step in modeling is the 
selection of an approximation function that best fits ground-
motion attenuation with distance. Up until the mid 1980s, dif-
ferent approaches and approximation formulas were explored 
(e.g., Milne and Davenport 1969; Esteva 1970; Schnabel and 
Seed 1973; Donovan 1973; Ambraseys 1975; Trifunac and 
Brady 1975; Campbell 1981; Joyner and Boore 1981). To 
model ground-motion attenuation with distance, Milne and 
Davenport (1969) used the following formula:

  
GM =

a1 exp(a2 M )
a3 exp(a4 M ) + R2  (2)

where   a1....4 are the estimator coefficients. Esteva (1970) used 
a similar formula with the same distance decay (that is, R–2). 
Donovan (1973) and later Campbell (1981) used a similar type 
of relation with a slower decay:

  
GM =

a1 exp(a2 M )
[R + C (M )]n  with 1.09 < n < 1.75. (3)
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Schnabel and Seed (1973) suggested the following attenuation 
formulation: 

  
GM = a1

R n  with 1.5 < n < 2.0.   (4)

Equations 2–4 represent ground-motion attenuation as a 
power-law with slope n ranging from 1 to 2. Trifunac and Brady 
(1975) and Trifunac (1976) suggested a different expression:

  log10 (GM ) = M + log10 A0 (R) − log10 a0 (M )  (5)

where   log10 A0 (R)  is an empirically determined attenuation 
function used for calculation of local magnitude ML, and 

  log10 a0 (M )  is a magnitude scaling function. Ambraseys 
(1975) also suggested a logarithmic type of dependency:

  ln(GM ) = a1 + a2 M L + a3 ln R .  (6)

The expressions from Trifunac and Brady (1975) and 
Ambraseys (1975) seem to be the first of their kind to use a 
logarithmic type of relation for peak ground-motion attenua-
tion modeling. Later, Joyner and Boore (1981) combined geo-
metrical spreading with anelastic attenuation:

  ln(GM ) = a1 + a2 M + a3 ln R + a4 R .   (7)

Since the late 1980s, approximations similar to Equation 7 have 
been commonly used in attenuation relations (e.g., Abrahamson 
and Silva 1997; Campbell 1997; Sadigh et al. 1997; Boore et al. 
1997). According to Campbell (2003), an attenuation relation 
in its most fundamental form can be expressed as:

  ln(GM ) = a1 + a2 M − a3 ln R + a4 R + a5 F + a6 S + sσ (8)

where F is a parameter characterizing the style of faulting, S 
is a parameter characterizing site condition, and σ is a ran-
dom error term with zero mean (normally distributed). Most 
current attenuation relation developers follow the modeling 
approach based on Equation 8 (e.g., Abrahamson and Silva 
2008; Boore and Atkinson 2008; Campbell and Bozorgnia 
2008; Chiou and Youngs 2008; Idriss 2008). Since ground-
motion data is considered to be log-normally distributed, the 
transition from linear (Equation 1) to logarithmic (Equation 
8) domain simplifies data fitting by linearization in regression. 
On the other hand, it pushes researchers to search for a fixed 
functional form between logarithm of ground-motion inten-
sity measure and magnitude, distance, and other independent 
parameters appropriate for both near- and far-field. This prac-
tice generally results in complex dependencies between depen-
dent and independent parameters.

ATTENUATION CHARACTERISTICS OF PGA AND 
ITS MODELING

According to the wave propagation theory, in an elastic homo-
geneous medium residual displacements from a point source 

attenuate as R–2, P and S waves attenuate as R–1, and surface 
waves attenuate as R–0.5 (Chinnery 1961; Haskell 1969). This 
means that ground-motion attenuation theoretically follows 
a power law and its order changes from near- to far-field. The 
actual attenuation is much more complex because an earth-
quake source is not a point, and anelastic and scattering effects 
also take place in heterogeneous media. To see how recorded 
ground motion attenuates in the near-field, consider the spa-
tial distribution of ground-motion data recorded in the prox-
imity of earthquake fault zones (e.g., Mogul 2008 [Nevada]; 
Parkfield 2004 [California]; Chi-Chi 1999 [Taiwan]; and 
Northridge 1994, Loma Prieta 1989, and Imperial Valley 1979 
[California]). These reveal the following important attenua-
tion characteristics of PGA: 

1. remains constant in near-field (flat response—no attenu-
ation), 

2. exhibits an increase in amplitude (bump on attenuation 
curve) or a turning point (that is, decay) at certain dis-
tances (about 3–10 km from the fault rupture), 

3. attenuates as R–1 and faster at distances greater than 
10 km, 

4. its amplitude amplifies at certain distances due to basin 
effect or reflection from the Moho surface, and

5. depending upon crustal characteristics, it can attenu-
ate much faster at distances larger than 100 km due to 
regional low Q values, as it is the case in the WUS. 

As shown in Figure 1A, the 2004 M 6.0 Parkfield earthquake 
is a well-recorded event at both near- and far-field. Figure 1B 
shows PGA data for the 1979 M 6.5 Imperial Valley earth-
quake. The attenuation characteristic of the Parkfield and 
Imperial Valley earthquakes is similar to that from a frequency 
response function of a single degree of freedom (SDF) oscil-
lator: flat response at low frequencies, a bump and a turning 
point, and sharp decay. The frequency response function of an 
SDF oscillator can be expressed as:

  
G(l) = A

(1 − l 2 )2 + 4 D0
2 l 2  (9)

where l = w/w0, and A is the amplification coefficient (that is, 
scaling parameter), w is the cyclic frequency, w0 is the natural 
cyclic frequency, and D0 is a damping term. Substituting the 
square of frequency (w2) term with the distance (R) term, we 
obtain the core attenuation equation as first introduced in 
Graizer and Kalkan (2007):

  
G (M , R ,C0 ) = 1

1 − (R R0 )[ ]2 + 4 D0
2 (R / R0 )

. (10)

In Equation10, R0 is the corner distance, which is directly pro-
portional to the magnitude of the earthquake. The larger the 
earthquake, the wider the area with no attenuation of peak 
parameters. Data show that R0 varies from 4 km for M 5 to 
about 10 km for M 8 (Graizer and Kalkan 2007). A certain 
analogy can also be seen between the R0 and the corner fre-
quency in Brune’s model (1970, 1971) since both are related to 
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the size of the earthquake. Campbell (1981) suggested an idea 
similar to the corner distance in our model where he stated that 
“the distance at which transition from far-field to near-field 
attenuation occurs is deemed to be proportional to the size 
of the fault rupture zone, especially fault length for the larger 
shallow-focus event.” Parameter D0 is the damping term and 
describes the amplitude of the bump. Setting up damping to 
D0 = 0.7 results in the absence of bump. 

The amplitudes of PGA predicted for the Parkfield and 
Imperial Valley events are shown in Figure 1 at 16, 50, and 84 
percentiles. The fact that the highest PGA was not recorded 
at the closest distance but at some distance from the fault was 
previously observed and discussed in the 1979 Imperial Valley 
earthquake dataset (N. Abrahamson, personal communica-
tion; see also Figure 10 in Campbell 1981). In an idealized 
case of uniform distribution of slip along the fault rupture, 
maximum ground motion occurs on the fault. However, if the 
fault-slip is not uniformly distributed and the fault itself is non-
planar, then the highest ground motion can be observed near 
the strongest asperity, with other near-field points having lower 
amplitudes. In this case, points at some distance from the fault 
plane (closest to lower amplitude of fault slip) can experience 
higher amplitude motion due to the effect of farther but stron-
ger asperity, rather than the nearest point on the fault.

MODULAR FILTER-BASED APPROACH

We suggest using the following mathematical formulation 
instead of Equation 8 to represent ground motion attenuation. 

  

PGA = G1(M , F ) ⋅G2 (M , R ,C2 ) ⋅G3 (M , R ,C3 ) ⋅
G4 (M ,C 4 ) ⋅G5(M , R ,C5 ) ⋅ sY

  (11)

In this representation, each function (Gn) is in multiplication 
form (that is, cascade of filters), helping to better understand its 
influence on the resultant ground-motion intensity measure. 
Equation 11 may be expressed in logarithmic space as:

  
ln(PGA) = ln[Gn (M , R ,C n , F )]

n
∑ + s lnY .  (12)

Equation 12 is similar to the equation of a finite impulse 
response (FIR) filter, a digital filter characterized by its transfer 
function. Mathematical analysis of the transfer function can 
describe how it will respond to any input. For example, design-
ing a filter consists of developing specifications appropriate to 
the problem and then producing a transfer function meeting 
these specifications. We suggest using a similar approach by 
creating an attenuation relation (transfer function) as a com-
bination of filters, as shown in Equation 11. Analogous to the 
traditional seismological approach (e.g., Boore 2003), the total 
spectrum of the motion at a site   Y (M 0 , R , f ) is split into four 
parts with contributions from earthquake source (E), path (P), 
site (G), and instrument or type of motion (I) as:

  Y (M 0 , R , f ) = E(M 0 , f ) ⋅ P(R , f ) ⋅G( f ) ⋅ I ( f )  (13)

where M0 is the seismic moment.
Using separate functions (Gn) in series and modeling 

ground motion attenuation by means of an SDF response func-
tion provides the following advantages:

1. It allows representing each physical phenomenon on seis-
mic radiation by a separate filter as a function of indepen-
dent physical parameters (e.g., M, R). This brings more 
physical meaning to each filter and consequently more 
connection to theoretical seismology.

 ▲ Figure 1. Strong-motion data recorded during (A) 2004 M 6.0 Parkfield and  (B) 1979 M 6.5 Imperial Valley earthquakes compared to 
predictions at 16, 50, and 84 percentile.
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2. Instead of fitting an empirical equation to an entire data-
base via single- or two-stage regression, the filter-based 
approach allows for sequential data fitting via robust non-
linear optimization (see for example, Graizer and Kalkan 
2007). 

3. It eliminates the need to search for a complex and purely 
empirical attenuation model that fits all distances.

Let us look at the filters used in our ground-motion attenua-
tion model, developed for the range of magnitudes 5 < M < 8 
and distances up to 250 km. As shown in Figure 2, the first 
filter, G1, is for magnitude and style of faulting scaling. The sec-
ond filter, G2, (called “core attenuation equation”) models the 
attenuation of ground motion in the near-field. G3 represents 
intermediate distance correction and basin effects. G4 is for 
ground-motion amplification due to shallow site conditions, 
and G5 adjusts the slope of the attenuation curve at far dis-

tances. Separate filters can represent amplification of ground 
motion at intermediate distances due to reflections from the 
Moho surface, near-field directivity, and hanging wall effects. 
Each filter utilized in our model is briefly explained as follows. 

Filter G1: Magnitude and Style of Faulting Scaling
The following scaling function models magnitude and style of 
faulting scaling:

  A(M , F ) = [c1 arctan(M + c2 ) + c3 ] F  (14)

where c1, c2, and c3 are estimator coefficients and F represents 
scaling due to style of faulting. This scaling function reflects 
saturation of PGA with increasing moment magnitudes. 
According to the results of Sadigh et al. (1997), reverse fault 
events create ground motions approximately 28% higher than 

 
 
 
 
 
 

  ln(PGA) = ln(G1) + ln(G2 ) + ln(G3 ) + ln(G4 ) + ln(G5) + ln(PGA)   
 

Modules  

  ln(G1) = ln [c1 arctan(M + c2 ) + c3 ]F( )   
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             where  

  r2 = R / R2   

  R2 = c4 M + c5        D2 = c6 cos[c7 (M + c8 )]+ c9  

  r3 = R / R3              R3 = 100       
  
D3 = 0.65 for Z < 1 km

0.35 for Z 1 km  

  R5 = c11M 2 + c12 M + c13  

 

      Estimator Coe�cients 
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 ▲ Figure 2. Graizer-Kalkan PGA attenuation relation for free-field maximum horizontal component of ground motion (Graizer and 
Kalkan 2007).
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those from crustal strike-slips. Following this, we used F = 1 
for strike-slip and normal faults and F = 1.28 for reverse faults. 

Filter G2: Core Attenuation Equation
In our model, the corner distance and damping in the core 
equation were denoted as R0 and D0. For consistency with G2 
in Equation 11 we refer to them as R2 and D2 in Equation 15. 
R2 is a function of M, and D2 quantifies the intensity of bump 
on the attenuation curve, 

  
G2 (M , R ,C2 ) = 1

1 − (R R2 )[ ]2 + 4 D2
2 (R / R2 )

   
 (15)

  

R2 = c4 M + c5

D2 = c6 cos(c7 M + c8 ) + c9

 (16)

where c4 and c5 are estimator coefficients. Equations 15 and 
16 imply that for larger magnitudes, the turning point on the 
attenuation curve occurs at larger distances. D2 is a function 
of magnitude, reaching its minimum with D2 = 0.4 (produc-

ing a significant bump) for M 6–6.5 and being higher at M < 5 
and M > 7 (much lower or no bump), where c6, c7, c8, and c9 
are estimator coefficients. The relative level of bump on the 
attenuation curve decreases at larger and smaller magnitudes. 
Recorded data show that the bump saturates at M > 7.5.

Filter G3: Basin (Deep Sediment) Effect
Existence of deep sediments may amplify surface waves at dis-
tances more than 30 to 50 km (Lee et al. 1995; Campbell 1997; 
Frankel et al. 2001). We model this effect by applying the G3 
filter as shown in Figures 2 and 3. The G3 filter has two param-
eters: Distance, R3, and damping, D3. R3 describes the distance 
at which amplification (bump on attenuation curve) due to 
basin effect takes place and D3 describes its amplitude (lower 
value of D3 produces higher amplitudes of bump, see Figure 
3B). If the sediment thickness is small, the basin effect can be 
neglected and D3 can be taken as 0.65–0.7 (no bump). G3 filter 
with this value of D3 results in a change of slope of the attenu-
ation curve at distances larger than R3 only, and G3 remains 
ineffective for distances less than R3 (Figure 3B and C). R3 is 
fixed to 100 km. Resultant attenuation function   (G2 ⋅G3 )  
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 ▲ Figure 3. A) 2004 M 6.0 Parkfield earthquake PGA data and approximation curves for ground-motion attenuation (low amplitude 
data shows faster attenuation); B) examples of filters modeling different physical phenomena including core attenuation, basin, and 
far distance fast attenuation; C) effects of basin filter and far distance fast attenuation filter on attenuation curve; D) modeling Moho 
reflection.
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decays proportionally to R-1.5 at distances R >R3, unlike R-1 
decay produced by the G2 filter (Figure 3C). 

We envision the damping parameter of the third filter 
(D3) to be a smooth function of basin depth (thickness of sedi-
ment layer). As a first approximation, we considered the basin 
effect to be identical for all sediment depths (Z) more than 1 
km (Graizer and Kalkan 2007; Graizer et al. 2010): 

  

G3 (M , R ,C3 ) = 1
1 − (R R3 )0.5 

2
+ 4 D3

2 (R R3 )0.5

  
D3 = 0.65 for Z < 1 km

0.35 for Z ≥ 1 km




. (17) 

D3 is expected to decrease smoothly from 0.7 to 0.3–0.4 and 
saturate with an increase in sediment thickness. 

Filter G4: Effect of Shallow Site Conditions 
Cross-comparison of the NGA relations demonstrates sig-
nificant differences in site amplification for PGA and spectral 
acceleration ordinates for soft soils (VS30 < 400 m/s) (Idriss 
2009). These differences call for further calibration of nonlin-
ear models based on experimental data. On the basis of avail-
able studies (a list of references is given in Graizer and Kalkan 
2007), we adopted a linear site amplification filter as 

  Fsite = bv ⋅ ln(VS 30 V A )  . (18)

Equation 18 is the equivalent form of the linear site correction 
expression provided by Boore et al. (1997). In the linear site 
amplification formula of Boore et al.,   bv = −0.371 , whereas 
our estimates yield   bv = −0.24 . Similar to the findings of 
Field (2000), Equation18 with its parameters given in Figure 
2 exhibits less amplification as the VS30 decreases compared to 
Boore et al. 1997. 

Filter G5: Far-Distance Attenuation Filter 
The USGS Atlas global database, with 13,992 PGA data points 
from worldwide shallow crustal events (http://earthquake.
usgs.gov/eqcenter/shakemap/atlas.php), indicates that ground-
motion attenuation for distances more than 100 km has two 
main tendencies: faster attenuation in the order of R-4 and 
slower attenuation in the order of R-1.5 (Graizer et al. 2010). 
Increase in the attenuation rate (that is, faster attenuation) is 
due to relatively low Q-values while decrease in the attenuation 
rate is due to high Q-values. For regions similar to the CEUS 
with relatively high Q-values (Singh and Herrmann 1983; 
Mitchell and Hwang 1987; Chandler et al. 2006), the attenu-
ation rate at far-field is about the same as in near-field (about 
R-1.5). In the WUS with relatively low Q-values, attenuation 
is faster (almost R-4) at far distances. For example, the 2004 
Parkfield earthquake exhibits faster ground-motion attenua-
tion (Figure 3A) at distances >100 km. To model fast attenua-
tion at far distances, the following filter can be implemented:

  

G5(M , Rcl ) = 1
1 − (R R5 )d 

2
+ 4 D5

2 (R R5 )d
 (19)

G5 has a flat region at distances R < R5 and a turning 
point around the corner distance, R5, for damping param-
eter, D5 = 0.6–0.7. The rate of attenuation curve is deter-
mined by an adjustable parameter d, varying from 0 to 2.5; 
0 means no adjustment to attenuation rate. In Equation 19, 

  R5 = c11M 2 + c12 M + c13 . Corner distance R5 increases with 
M. Use of G5 with d = 0.5 brings the attenuation rate at far dis-
tances to R-2.0. The G5 filter practically does not affect distances 
closer to the fault than the corresponding corner distance (see 
Figure 3A and B). It allows for relatively fast change of rate, 
which is practically impossible in the classical approach using 
Equation 8.

The path effects on strong ground motion due to crustal 
structures have been known for a while. In central California, 
Bakun and Joyner (1984) suggested that the large positive 
residuals in ML at distances between 75 and 125 km could be 
due to Moho reflections. Burger et al. (1987) showed that the 
observed interval of relatively high amplitudes in the distance 
range of 60 to 150 km in North America can be attributed 
to post-critically reflected S waves from the Moho discon-
tinuity. Somerville and Yoshimura (1990) present evidence 
of enhanced amplitudes of strong ground motion from the 
1989 Loma Prieta earthquake recorded at San Francisco and 
Oakland. Liu and Tsai (2009) showed the significant effect 
of Moho reflection on peak ground motion in northwestern 
Taiwan. With the methodology implemented herein, it is pos-
sible to add another filter to represent the Moho reflection as 
G6(M, R, C6) (Figure 3D). We leave the calibration of this filter 
based on the recorded data for a future study. 

PGA-BASED PREDICTIVE MODEL FOR SPECTRAL 
ACCELERATION

Our spectral acceleration (SA) prediction model for 5% damp-
ing explicitly integrates PGA as a scaling factor for the spec-
tral shape, which is a continuous function of spectral period 
(or frequency). We used an empirical approach and found out 
that the summation of a modified lognormal probability den-
sity function [F1(T)] with an altered SDF oscillator transfer 
function [F2(T)] provided the desired shape and also enough 
flexibility to fit into a wide range of spectral shapes of earth-
quake recordings. Each one of these functions simulates 
certain spectral behavior; for that reason their unification

 
  [ F (T ) = F1(T ) + F2 (T )]  results in a desired predictive model. 
Thus, the model allows for prediction of SA at any period of 
interest within the model range of 0.01 to 10 s or even longer 
periods. Figure 4 summarizes the Graizer and Kalkan (2009) 
model. In this model, z controls the slope of spectral shape 
decay at long periods, with z = 1.5 demonstrating best match to 
recorded data. The average spectrum has different decay before 
and after its predominant (peak) period; this peak period is 
identified by   µ(M , R ,VS 30 ) and 

  
Tsp ,0 (M , R ,VS 30 ) . The wide-
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ness of the bell-shape of the spectrum is identified by S(M, R) 
and Dsp. Parameters of the SA model shown in Figure 4 were 
computed through nonlinear optimization. The standard devi-
ation of our SA model ranges from 0.544 at 0.01 s to 0.781 at 
5 s (Table 2 in Graizer and Kalkan 2009), which is comparable 
to the recent NGA relations.

MODEL INPUT PARAMETERS

The number of input parameters in recent ground-motion 
attenuation relations (e.g., Abrahamson and Silva 2008, 
Campbell and Bozorgnia 2008, Chiou and Youngs 2008) 
is much more than that from their respective earlier versions 
(Abrahamson and Silva 1997, Campbell 1997, Sadigh et al., 
1997). This trend is driven by an attempt to increase accuracy 

and efficiency in predictions. In the following, we categorize 
the parameters used in recent attenuation relations as primary 
and secondary:

Primary parameters: 
1. Magnitude 
2. Distance 
3. Style of faulting
4. Site conditions: shallow site and deep sediment effects

Secondary parameters: 
1. Hanging/foot wall effect
2. Depth to the surface of the rupture
3. Directivity effect
4. Earthquake source fault plane solution parameters (dip 

and rake angle)
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Figure 4 

PGA SA(T) = ×  R = Closest fault distance  
M = Moment magnitude 

 ▲ Figure 4. PGA-based prediction model for 5% percent damped response spectral acceleration ordinates (Graizer and Kalkan 2009).
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Abrahamson and Silva (2008), Campbell and Bozorgnia 
(2008), and Chiou and Youngs (2008) use all these input 
parameters except for directivity. Boore and Atkinson (2008) 
use the first set of input parameters without basin effect, and 
Idriss (2008) uses the first three parameters and a generalized 
site correction term for “deep or stiff soil.” In our attenuation 
model, we only use the primary parameters, which are relatively 
easy to determine. The inclusion of secondary parameters results 
in significant complexity in the models. First, it requires above-
average seismological training for users (not necessary available 
to all users), and second, these parameters are often non-unique. 
For example, for the San Simeon earthquake, the depth to the 
surface of the fault rupture and fault plane solution parameters 
vary significantly in different publications. These parameters 
might not be available immediately after the event.

COMPARISONS WITH NGA RELATIONS

To demonstrate the performance of the Graizer and Kalkan 
(2007) model, we first compare its predictions with recorded 
PGA data and three NGA relations (Abrahamson and Silva 
2008, Campbell and Bozorgnia 2008, and Chiou and Youngs 
2008) in Figure 5. The model of Boore and Atkinson (2008) is 
not included because of the different distance metric used. In 
comparison, we considered a number of relatively well-recorded 

events in California including the 1979 M 6.5 Imperial Valley, 
1994 M 6.7 Northridge, 2004 M 6.0 Parkfield, and 2010 M 7.2 
El Mayor–Cucapah earthquakes. All predictions are based on 
an average S-wave velocity of 400 m/s. Predictions by the three 
NGA relations for PGA are multiplied by a factor of 1.12 to 
convert their predictions from the geometric mean horizontal 
component to the maximum of the two as-recorded horizontal 
components; this adjustment factor was taken from Campbell 
and Bozorgnia (2007). Visual comparison of the predictions of 
our model with those of the three NGA relations shows that 
our predictions are in good agreement with the recorded data 
as well as with the predictions of the three NGA relations for a 
range of magnitudes and distances. In general, our predictions 
are higher, in the distance range of 5–10 km, than those from 
the three NGA relations. Between 20 and 100 km, our predic-
tions and those of Abrahamson and Silva (2008) and Chiou 
and Youngs (2008) are almost identical.

Figure 6 compares the spectral acceleration predictions 
between our model and the four NGA relations (including Boore 
and Atkinson 2008, because at large fault distances the differ-
ences in distance metrics for these events is not significant) con-
sidering an average of 20 response spectra from the M 7.1 Hector 
Mine and the M 7.2 El Mayor–Cucapah earthquakes at the dis-
tance of approximately 190 km (with 10 average SA functions 
from each earthquake). Both earthquakes are similar in terms 

 ▲ Figure 5. Event-based comparisons of Graizer-Kalkan predictions with the NGA relations.
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of magnitude and style of faulting (that is, strike slip), but the 
El Mayor–Cucapah earthquake (with magnitude slightly higher 
than that of the Hector Mine earthquake) produced almost two 
times lower average SA than that of the Hector Mine. The aver-
age response spectrum of the four NGA relations is almost the 
same as our predictions at periods longer than 0.5 s. At very 
short periods (0.01–0.05 s), our predictions are slightly higher 
than that of the average NGA curve and closer to the average 
recorded PGA. From 0.06 to 0.3 s, the average response spec-
trum of the four NGA relations is closer to the recorded data. 
The same plot also shows significant differences at long periods 
due to the basin effect in Los Angeles. All models, except Boore 
and Atkinson (2008), factor in basin effect yet tend to underesti-
mate the spectral amplitudes at long periods (4 to 10 s). The dif-
ference is less for the Abrahamson and Silva relation at long peri-
ods. However, the Abrahamson and Silva model overpredicts at 
periods between 0.3 to 4 s. This plot demonstrates that our SA 
prediction model is in good agreement with the actual data and 
also with predictions from the three NGA relations.

CONCLUDING REMARKS

An attenuation relation is a mathematical representation of 
ground-motion signal transformation, due to numerous physi-
cal processes, from the earthquake source to a site. We found 
that a single-degree-of-freedom transfer function approxi-
mation, with a combination of filters, is an accurate (that is, 
providing expected median prediction) and efficient (that is, 
providing relatively small standard error of prediction) way to 

model this complex transformation. In a sense, it is analogous 
to the classical approach where the total spectrum of motion at 
a site is split into different parts with contributions from earth-
quake source, path, site, and instrument or type of motion. 
This approach also allows for relatively fast change of attenu-
ation rate leading to better representation of regional variation 
in ground-motion prediction. In contrast to other models, our 
PGA-based predictive model for spectral acceleration is a con-
tinuous function of spectral period. Formulation of response 
spectrum by a continuous function of period allows calculation 
of its ordinates at any period of interest within the model range 
of 0.01 to 10 s and possibly beyond it. As shown here and in a 
number of other publications, the Graizer and Kalkan attenua-
tion relation demonstrates good agreement with recorded data 
from past earthquakes as well as with the NGA relations.

DATA AND RESOURCES

The Graizer-Kalkan ground-motion prediction models for 
PGA and SA are available from the authors in Fortran, M.S. 
Excel, and MatLAB platforms. 
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